
Modular Simulations 

and Timing Issues 

in Whole-Cell Models

Master's Thesis

Dominik Bucher
dobucher@ee.ethz.ch

Informatics Life-Sciences Institute
University of Edinburgh

Automatic Control Laboratory
ETH Zürich

August 31, 2013

Supervisors
Prof. Vincent Danos
Prof. Heinz Koeppl



“I could exceedingly plainly perceive it to be all perforated and porous, much like a Honey-

comb, but that the pores of it were not regular [...] these pores, or cells, [...] were indeed

the first microscopical pores I ever saw, and perhaps, that were ever seen, for I had not

met with any Writer or Person, that had made any mention of them before this.”

Robert Hooke, on First Discovery of Cells



UNIVERSITY OF EDINBURGH, ETH ZURICH

Abstract

Informatics Life-Sciences Institute, Automatic Control Laboratory

School of Informatics,

Departement of Information Technology and Electrical Engineering

Master of Science

Modular Simulations and Timing Issues in Whole-Cell Models

by Dominik Bucher

Many simulation models, especially in biology, could benefit from integrating different

smaller modules into a bigger system. This is partly because the complexity of the overall

system is immense, so that a single monolithic block would be difficult to describe and

reason about, and also because single modules might use different modeling approaches,

like ordinary differential equations, boolean networks, flux balance analysis and more.

Of special interest are so-called whole cell models, which try to describe and simulate

everything that happens withing a biological cell. This thesis presents an analysis of

existing whole cell models and a generalized framework to make integration of various

modular simulations easy and fast. The work originated from the paper “A Whole-

Cell Computational Model Predicts Phenotype from Genotype” by J. Karr et al. [1].

The principles of distributing variables and resources among processes are formalized,

analyzed and refined. A reference implementation was developed as part of this work.

http://www.ed.ac.uk/
http://ethz.ch/
http://www.ilsi.inf.ed.ac.uk/
http://control.ee.ethz.ch/
http://www.inf.ed.ac.uk/
https://www.ee.ethz.ch/


Acknowledgements

I would like to thank all people involved in making this thesis possible. Most of all

my supervising professor Vincent Danos for constantly motivating me, discussing every

possible aspect, integrating me into his research group, bringing the results of the thesis

to people outside of the team and for allowing me to write the thesis at the University

of Edinburgh.

Also, the whole research group has always been around with a helping hand and lots

of feedback - namely Ricardo Honorato, Ilias Garnier, John Wilson-Kanamori, Milana

Filatenkova, Guoli Yang, Andrea Weisse and Sandrine Regiec. A special thanks also

goes to Hristiana Pashkuleva for studying my system in greater detail and using parts

of it for the iGEM competition.

Thanks to Peter Swain, Ramon Grima, Matthew Scott and Elco Bakker from the syn-

thetic biology department, for hosting me in the beginning and for discussing applica-

tions and feasibility of my ideas.

Thanks to Jordan Cronin and Shailendra Singh for reading through my thesis and point-

ing out mathematical and grammatical errors. A special thanks also to my family who

always assisted me, also with all the administrative things still running in Switzerland,

and for providing funding for my stay in Edinburgh.

Last but not least, I’d like to thank professor Heinz Koeppl for setting me up with

Edinburgh and Vincent Danos in special, for supervising me from the ETH side and for

making the whole thesis possible!

iii



Contents

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables viii

1 An Introduction to Whole Cell Models 1

1.1 An Informal Definition of a Whole Cell Model . . . . . . . . . . . . . . . . 1

2 A Detailed Description of the Karr Model 6

2.1 A Peek at the Karr Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Loading Initial Parameters and Values . . . . . . . . . . . . . . . . 8

2.2.2 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.4 Interaction Between States and Processes . . . . . . . . . . . . . . 12

2.2.5 A Comparison with Numerical Methods . . . . . . . . . . . . . . . 14

2.3 The Knowledge Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Analysis and Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Strengths and Weaknesses of the Model . . . . . . . . . . . . . . . . . . . 15

3 A Formal Description of Modular Simulations 17

3.1 Existing Modular and Distributed Models . . . . . . . . . . . . . . . . . . 17

3.2 Formalizing the Karr Model . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 The Building Blocks of the Karr Model . . . . . . . . . . . . . . . 18

3.2.2 Connecting the Blocks . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 A Ubiquitous Description of Modular Models . . . . . . . . . . . . . . . . 23

3.4 Different Implementations of Split(·) and Merge(·) and General Algo-
rithms to Intersect Changes . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 Pre-Allocation Strategies . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.2 Post-Allocation Strategies . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2.1 Smash Strategy . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2.2 Change Merging Strategy . . . . . . . . . . . . . . . . . . 27

3.4.2.3 Synchronization Points . . . . . . . . . . . . . . . . . . . 30

3.4.2.4 Independent Time Scales . . . . . . . . . . . . . . . . . . 30

iv



Contents v

3.4.2.5 Distributed Strategies . . . . . . . . . . . . . . . . . . . . 31

3.4.3 An Informal Comparison . . . . . . . . . . . . . . . . . . . . . . . 34

4 Properties of Modular Simulations 35

4.1 Correctness: Implications of Karr’s Split(·) and Merge(·) . . . . . . . . . 35

4.1.1 Why Metabolites Need to be Split . . . . . . . . . . . . . . . . . . 36

4.1.2 Effects of Dividing State . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.2.1 Consumption Errors in a Simple System . . . . . . . . . 37

4.1.2.2 Tackling the Problem of Under-Consumption . . . . . . . 38

4.1.2.3 Generalizing Consumption Errors on Arbitrary Functions 40

4.2 Domain Applicability of Modularized Simulations . . . . . . . . . . . . . . 40

4.2.1 Non-Interacting Systems . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Heavy-Load Processes . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Effective Dynamics / Time Step Adaption . . . . . . . . . . . . . . . . . . 45

4.3.1 Single Process Time Step Adaption . . . . . . . . . . . . . . . . . . 45

4.3.2 Multiple Process Time Step Adaption . . . . . . . . . . . . . . . . 46

4.3.3 Violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 An Implementation of the Integrated Module Simulator 49

5.1 Defining the Simulation in an Easy Way . . . . . . . . . . . . . . . . . . . 49

5.1.1 The Complexity of the Karr Whole Cell Model . . . . . . . . . . . 50

5.1.2 An Easier Model Description . . . . . . . . . . . . . . . . . . . . . 51

5.1.2.1 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.2.2 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.2.3 Core Model . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Meta Information . . . . . . . . . . . . . . . . . . . . . . . . 53

Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.2.4 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Simulation Strategies . . . . . . . . . . . . . . . . . . . . . . 55

Logging Systems . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 An Implementation in Scala . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 Used Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.2 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.2.1 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.2.2 A Mapping of Variables to Arrays . . . . . . . . . . . . . 58

5.2.3 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.3.1 Gathering Changes . . . . . . . . . . . . . . . . . . . . . 58

5.2.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.5 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.5.1 Integrating Changes . . . . . . . . . . . . . . . . . . . . . 59

5.2.5.2 Detecting Violators . . . . . . . . . . . . . . . . . . . . . 59

5.2.5.3 Stepping Back . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.6 The Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



Contents vi

5.3 An Environment to Facilitate the Development of Whole Cell Models . . 60

6 Integrated Module Simulations 62

6.1 A Brine Tank Cascade System . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1.1 Recycled Brine Tank Cascade . . . . . . . . . . . . . . . . . . . . . 64

6.2 A Whole Cell Model After Tobias Bollenbach . . . . . . . . . . . . . . . . 65

6.3 A Resource Processing Model Based on the Bollenbach Model . . . . . . . 66

6.4 An Artificial Model of Comparable Complexity to the Karr Model . . . . 67

7 Conclusions and Future Works 69

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A Appendix 71

A.1 Time Spent on Different Modules . . . . . . . . . . . . . . . . . . . . . . . 71

A.2 Hill-Type Consumption of Resources . . . . . . . . . . . . . . . . . . . . . 72

A.3 Step Size Adaption for the Euler Method . . . . . . . . . . . . . . . . . . 72

Bibliography 74



List of Figures

1.1 A Prokaryotic Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Karr Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Karr Simulator Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Karr Model Resource Splitter . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Post-Allocation Intersection Oracle . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Change Merging Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Synchronization Points Strategy . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Independent Time Scale Strategy . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Effects of Splitting State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Effects of Splitting State in the Exemplary System . . . . . . . . . . . . . 38

4.3 Effects of Splitting Resources (Large ∆t) . . . . . . . . . . . . . . . . . . . 39

4.4 Effects of Splitting Resources (Small ∆t) . . . . . . . . . . . . . . . . . . . 39

4.5 Modularization Dendrogram . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 Total Time for Different Simulation Methods . . . . . . . . . . . . . . . . 44

5.1 Simulator Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 MOI-Sim Web Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1 Brine Tank Cascade System . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Brine Tank Cascade System with Mathematica . . . . . . . . . . . . . . . 63

6.3 Recycling Brine Tank Cascade System . . . . . . . . . . . . . . . . . . . . 64

6.4 The Bollenbach Whole Cell Model . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Resource Processing Model . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.6 Resource Processing Model Plot . . . . . . . . . . . . . . . . . . . . . . . 67

vii



List of Tables

2.1 Karr Model States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Karr Model Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Karr Model Processes (cont.) . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Change Definition for Various Primitives . . . . . . . . . . . . . . . . . . . 21

3.2 Terms in Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Variables to be Copied from State . . . . . . . . . . . . . . . . . . . . . . 51

6.1 Strategy Execution Times . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.1 Karr Model Execution Time Distribution . . . . . . . . . . . . . . . . . . 71

viii



Chapter 1

An Introduction to Whole Cell

Models

1.1 An Informal Definition of a Whole Cell Model

The biological cell is a building block of life and is present as the basic structural and

functional unit in all known living organisms. It was first discovered in the 17th century

by Robert Hooke and has been subject to extensive studies ever since. Even after 350

years of research a lot remains to be unveiled and discovered.

Most cells are of a size of between one and hundred micrometers [2], and thus only visible

by use of a microscope or other experimental devices. This small size means a human

has about 100 trillion cells [3]. It was already discovered very early that organisms

are built from an aggregation of cells which perform all vital functions and are able to

transfer all information necessary to do so to the next generation of cells, thus allowing

life to be passed on [4].

Cells are split in two categories: eukaryotic and prokaryotic cells. Whilst eukariotic cells

can be found in all higher forms of life - plants, animals, fungi and so on, prokaryotic

cells are either bacteria or archaea. The primary difference is the cells’ complexity -

eukariotic cells are of much higher complexity. The most significant contrast is the

apparent lack of compartmentalization in prokaryotic cells. Eukaryotic cells contain

membrane-bound organelles, such as the nucleus, while prokaryotic cells do not. The

nucleus is a compartment circumvented by a membrane and holds the cellular DNA. In

prokaryotic cells the DNA, just as all other cell parts, is floating around freely in the

cytoplasm. As prokaryotic cells are simpler, they are currently the primary research

units when talking about whole cell modeling.

1





Chapter 1. An Introduction to Whole Cell Models 3

[6]. The initial conditions of a cell can be changed, cell processes can be modified and

changes can be applied to cells during a simulation without any need for biological

experimentation. Sample experiments are gene knock outs, insertion of bio-synthetic

components or change of cell surroundings. Results can be if the cell is still fit for

survival, which processes change in what ways or behaviors that the cell starts to show.

Of course, as whole cell modeling is a very recent trend in research, simulations have

to be accompanied by biological experiments, but already now they are able to point

out interesting things that can then be studied in more detail with in vitro experiments

[1, 5].

As whole cell models are of great complexity, several approximations and simplifications

have to be made. A first and important approximation is the modularization of the

model. As research has been done on many of the basic processes, but not on the

interplay of all of them, the idea is to keep processes as modules which interact in

certain ways on a shared state. Modularization of models has been done for a long time

and is discussed for example in [7] and [8]. A formalism often used is the discrete event

system (DEVS), which involves modularization of event-based systems, but can also be

used to simulate continuous systems via some extensions and quantization methods. A

popular software that allows modularized modeling is Mathworks’ Simulink [9]. It allows

to specify models in a hierarchical manner and connect the different parts via wires.

In general, modularization has various benefits:

• Modules can be modeled using different modeling techniques. There is often a

preferable way of describing a certain process, either by its nature itself or by the

amount of research that has been done on it. Chemical reactions can be described

using mass kinetics and differential equations, whilst the overall metabolic network

of the cell is best described using flux balance analysis. Especially for processes

that involve a limited number of reactants stochastic modeling is favorable.

• As every process in itself should be consistent and has most likely been tested in

isolation by some researcher, the process can be unit tested within the whole cell

simulation as well. This allows to make some statement about correctness of the

simulation.

• Modules can be translated more or less directly from literature. This allows

the whole cell modeler to integrate different research results in a relatively short

amount of time, as no time has to be spent on translating a model into another

structure.

Of course modularization also comes with several downsides:



Chapter 1. An Introduction to Whole Cell Models 4

• The different processes have to be fitted into the whole simulation. This is usu-

ally tricky as the research on different processes doesn’t necessarily agree on all

parameters and aspects.

• The modularization also introduces complexity in the simulation engine. This will

be described later in this thesis in great detail.

Further, a lot of biological processes are still unknown or poorly described, with data

often only available for a few species. In order to be complete, a model has to make

assumptions about such processes and their parameters. This can possibly have huge

effects which are difficult to study.

Various approximations are not only made from a biological, but also from a compu-

tational and mathematical point of view. A general topic of interest is the concurrent

access to a shared state by many processes [10]. This computer science issue has been

studied in great detail for the synchronous execution of programs. However, the case

of biological modeling lets us make assumptions that can greatly simplify the parallel

simulation. As an example, the model of Jonathan Karr [1] lets the processes act se-

quentially, on a unified time scale. But as often in the field of numerical computation, a

lot of other solutions exist, several of them allowing the processes to run in parallel. The

study of those will be a major point within this thesis. Important aspects covered are

the overall simulation performance, the model description language and the integration

of the processes. From the computational point of view, the most important factor to

modularize a system is that the individual computation time of the processes should

be high in comparison to the time needed for the intertwining logic. Separation and

parallelism can only shine in such a setting.

A classification of whole cell models in a traditional way isn’t possible, as whole cell

models often will encapsulate many different modeling techniques. The best classification

goes along the line of a huge model that is too complicated to describe as a monolithic

block and is instead split into modules. Here, several points need to be denoted:

• This category doesn’t only include whole cell models, but all models of great

complexity and a lot of unknown factors.

• The term whole cell model is sometimes also used in smaller and less complicated

models. Though not complying with the above definition, they try to make general

statements about cell behavior as a complete cell, and not single parts thereof.

Such models will also be discussed for their use as a host model, where more and

more processes can be plugged in.



Chapter 1. An Introduction to Whole Cell Models 5

With this surrounding set, the thesis talks about the following topics: chapter two will

give a detailed description and review of Jonathan Karr’s whole cell model [1]. As this

model is the first real whole cell model it has stirred up the scientific community quite

a lot. Some of its assumptions, strengths and weaknesses will be dissected within this

thesis. Chapter three will introduce a more formal description of modular simulations,

especially with respect to whole cell modeling, where the underlying biology allows

for some simplifications in the mathematical structures. Chapter four then discusses

interesting properties of the formalism introduced in chapter three. Chapter five and six

provide a concrete implementation and experiments run using different algorithms and

systems. Chapter seven concludes the thesis and raises some questions that need to be

tackled in the future - the field of whole cell modeling is just emerging!



Chapter 2

A Detailed Description of the

Karr Model

2.1 A Peek at the Karr Model

The model developed by Jonathan Karr in [1] is the first model that attempts to simulate

a whole biological cell, in this case a single cell of a Mycoplasma Genitalium. The cell

is simulated from a “just-split” state until the cell splits again, describing exactly one

cell cycle. In order to do so, the model molds data from over 900 research papers into a

single huge system. The model is realized in object-oriented Matlab [11].

As the dynamics of the whole system as a monolithic block are too complicated to

reason about and also to integrate, the system is split into 28 processes which are unit

tested and verified independently. The processes are modeled using diverse mathematics

and fundamentally different experimental measurements. The complete system state

is stored in 16 states which provide a namespacing architecture to group single state

variables. They also define methods of calculation for various dependent cell properties,

e.g. the total cell mass. Processes and states synchronize every 1 second, i.e. processes

run independently for one second before returning their results into the main simulation.

Processes and states are displayed in figure 2.1.

The model provides insights into the interaction of the different processes and thus into

many previously unobserved cellular behaviors. It also allows to change the cell state at

any point in time to see how the cell reacts. Changes can range from simple adaptions

of the environment to the introduction of new genes or processes. Scientific results men-

tioned in the original paper include protein-DNA association rates, relationships between

the duration of DNA replication initiation and replication, and more. The model also

6





Chapter 2. A Detailed Description of the Karr Model 8

arbitrary methods that can be called by processes or the simulator. The 28 processes

are specified by defining various methods which are then called by the simulator object.

The simulator object is also responsible for loading the parameter set and initial variable

assignments, splitting resources into shares for the different processes and to reintegrate

all state changes made by processes. Initial values and parameters come from the knowl-

edge base, a database tailored for storage of whole cell model data. The knowledge base

is described more in a later section and extensively in the corresponding paper [12].

The simulation object also stores the complete simulation from the beginning in a state

matrix which can be analyzed or stored to disk.

For a thorough description of the simulation system see the supplementary documents

of the original paper [1]. The documents are updated on a regular basis and should thus

describe the most recent state of the model.

2.2.1 Loading Initial Parameters and Values

In order to run a simulation, initial parameters and values have to be loaded by the

simulator. There are various ways to do so, the easiest being to set up the initial state

by loading a previously stored state that was initially prepared for this purpose by Karr

et al. Changing single parameters and values from this initial setup is easy and can be

done via a web interface [13], which generates an xml file with parameters to overwrite.

Alternatively, the values of any variable in the simulation can be changed directly in the

Matlab environment.

The extended version of loading the initial parameters is to run all the start up scripts,

which load parameters from the knowledge base, run the fitting algorithm and thus set

up the simulation.

2.2.2 States

States provide a mechanism for grouping and namespacing of the simulation state vector.

The grouping is done by logical and biological associations. Additionally, states allow

to define functions to calculate various dependent cell properties. States store their

variables in vectors, which all together form the complete state vector (the Karr model

never speaks of a complete state vector, but this simplification works well and will be

used further later on). Variables are also grouped by their dependency on others. States

further can provide constants to be read from the knowledge base.



Chapter 2. A Detailed Description of the Karr Model 9

Group Name Description

DNA Chromosome Represents the polymerization, winding, modi-
fication, protein occupancy, and (de)catenation
status of the chromosomes.

RNA Transcript Stores all of the information that pertains to
nascent RNA transcripts and aids in the time
evolution of Transcription.

RNA Stores the quantities of RNA in different im-
mature/mature and functional/non-functional
forms.

Protein Polypeptide Holds information about which mRNAs are ri-
bosome bound, as well as ribosomal progress of
translating a transcript across timesteps.

Protein Monomer Holds counts and attributes of the monomeric
species in the system.

Protein Complex Holds fixed parameters including the complex
subunit composition, molecular weights, amino
acid composition, half-lives, localization and min-
imum expression of each complex.

RNA Polymerase Holds precise positions on the chromosomes
where polymerases are bound.

Ribosome Represents the status of all ribosomes, species
ribosomes are bound to and translating and the
position of each ribosome.

FtsZ Ring Describes the polygonal FtsZ ring built for cy-
tokinesis.

Metabolite Metabolic Reactions Stores the instantaneous flux of each metabolic
reaction in reactions per second.

Metabolite Holds the copy number of each metabolite in each
of 3 compartments.

Other Geometry Stores the physical shape of the cell including its
width, length, volume, and surface area.

Host Represents the instantaneous configuration of the
human host.

Mass Calculates the total cell mass from the other
states.

Stimulus Represents the status of 10 properties of the ex-
ternal environment.

Time Stores the time elapsed in the simulation.

Table 2.1: States used in the Karr model

Table 2.1 summarizes the 16 states used in the Karr simulation. The group isn’t used

within the simulation and is only there to describe the model in a structured way.

However, one could imagine a generalized namespacing scheme where variables can be

accessed by groupname.statename.variablename or even longer chains.



Chapter 2. A Detailed Description of the Karr Model 10

2.2.3 Processes

Processes implement parts of the model in different ways, e.g. using Markov chains,

ODEs or stochastic systems. They have to specify several methods to be integrated into

the simulation system. The global requirements function is used to determine the initial

cell state and total flux of reactions over the complete cell cycle. Together, all the global

requirements functions describe the processes’ overall contribution to the cell function.

The current requirements function tells the simulator the instantaneous flux of metabo-

lites (small molecules used as building blocks in cells) and is used to split the total amount

of metabolites proportionally for the different processes. The current requirements in

the simulation are usually defined assuming an infinite metabolite supply (resembling

Hill type reactions, see also appendix A), thus assuming reactions in a saturated region

and only determined by enzyme rates or similar.

The most important function for a process to specify is the evolve function which per-

forms the changes on the state. Within the evolve function a process can use any

simulation technique to calculate a change that happens on the simulation within the

simulation step size ∆t (= 1s). It is important to denote some specialties about the

evolve function:

• As processes run sequential in the Karr model, any change on the system is valid.

There are no concurrency problems and each process can access the whole state

vector during evolve. However:

• Metabolites are split. This means that a process will get a fraction of the to-

tal metabolites to work upon. This should be considered when simulating mass

equations for example, as the real copy number of a metabolite is not available.

• Processes can also specify so-called side effects. Those are of additive nature

and are reintegrated by the simulator after the process finishes its evolve. They

provide a decoupling of states and processes, but are not extensively used at the

time of writing this thesis. This is mainly due to the fact that processes can

perform the same changes also directly on the states. A result of this thesis is a

greatly enhanced concept of side effects, which is later used as the primary way of

integrating processes into the big system.

Tables 2.2 and 2.3 summarize the 28 processes used in the Karr simulation. Again,

grouping is for explanation purposes and is not used within the simulator.



Chapter 2. A Detailed Description of the Karr Model 11

Group Name Description

DNA Condensation Implements “clamping of DNA”, DNA super-
coiling, macromolecular crowding and charge
neutralization.

Segregation Models migration of the chromosomes to op-
posing sides of the cell before division.

Damage Simulates spontaneous DNA modification due
to base loss, deamination and influence by ex-
otic agents.

Repair Describes machinery to detect and repair
damaged DNA.

Supercoiling Forces the DNA to be at a certain level of
helicity.

Replication Produces a complete chromosome for each
daughter cell.

Replication Initiation Determines when the replication starts.
Transcriptional Regulation Regulates the synthesis rates of RNA by mod-

ulating the affinity of RNA polymerase for
promoters.

RNA Transcription Models the first step in the synthesis of func-
tional gene products where RNA polymerase
and enzymes translate transcription units into
RNA.

Processing Models operonic RNA cleavage into individual
RNA gene products.

Modification Simulates tRNA and rRNA modification.
Aminoacylation Simulates the conjugation of amino acids to

the tRNAs and the aminoacylation of the tm-
RNA which delivers the amino acid alanine to
stalled ribosomes.

Decay Describes decay of all species of RNA.

Protein Translation Describes the production of amino acid poly-
mers using ribosomes, enzymes, tRNA and
metabolites.

Processing I First step after protein translasion for modi-
fying the created amino acid polymers. Mod-
els N-terminal formylmethionine deformyla-
tion and N-terminal methionine cleavage.

Translocation Moves the amino acids to other compartments
(second step in post-translational processing).

Processing II Models the third step, lipoprotein diacylglyc-
eryl adduction and lipoprotein and secreted
protein signal peptide cleavage.

Folding Folds the proteins into energetically favorable
three-dimensional structures.

Table 2.2: Processes used in the Karr model



Chapter 2. A Detailed Description of the Karr Model 12

Group Name Description

Protein Modification Models protein covalent modifica-
tion including phosphorylation, lipoyl
transfer, and α-glutamate ligation.

Complexation Models the formation of macromolecu-
lar complexes.

Ribosome Assembly Describes the enzymecatalyzed forma-
tion of 30S and 50S ribosomal particles.

Terminal Organelle Assembly Simulates the assembly of the protein
content of the terminal organelle.

Activation Activates proteins based on concentra-
tion of small molecules, DNA, RNA,
other proteins, temperature and pH.

Decay Describes dilution of proteins, macro-
molecular complexes, signal sequences
and polypeptides as well as misfolding
and refolding of protein monomers.

FtsZ Polymerization Assembles the FtsZ monomers into
long polymers.

Metabolism Metabolism Models the import of extracellular
nutrients and their conversion into
macromolecule building blocks.

Other Cytokinesis Simulates the pinching of the cell mem-
brane until separation and forming of
two daughter cells.

Host Interaction Models several aspects of interaction
with the human host and their influ-
ences on the cell.

Table 2.3: Continuation of processes used in the Karr model

2.2.4 Interaction Between States and Processes

A central aspect of the Karr model simulator is the way interactions between the state

and different processes are handled. Figure 2.2 shows the basic execution of the model.

As is visible the simulation doesn’t run in parallel but is instead strictly sequential.

What happens is that the state vector is modified by one process after another. Only

the metabolites are treated in a special way, they are split between processes at the

beginning of a simulation round.

As this introduces quite some unfairness between processes, they are randomly permuted

every simulation round, i.e. a process can come at any position between 1 and 28. As

an average simulation runs for about 29000 simulation steps (in this case that equals

29000 model seconds, which is about 8 hours), each process’ execution positions will be

uniformly distributed over the 28 possible ones. However, it gets more involved with





Chapter 2. A Detailed Description of the Karr Model 14

Processes can additionally introduce so-called side effects on the simulation. Side effects

are of completely additive nature and provide some idea of complete decoupling and

parallelism of processes. We shall see extended variants of side-effect integration later

in the thesis.

2.2.5 A Comparison with Numerical Methods

The Karr system is comparable to a system solver that uses an Euler method without

time step adaption. An Euler system gives agreeable results for stable systems and small

enough ∆t’s (for a discussion of various numerical methods and their implementations see

[14]). There is one huge difference which will also be emphasized throughout this thesis:

it’s an Euler method, where the different processes can modify the same variables (one

could also split a conventional Euler system, but then the splitting would be according

to the various differential equations). Furthermore there is a difference in the methods as

usually only differential equations are considered when talking about the Euler method.

However, in general the comparison holds and what’s left is deciding if the 1 second

time step is small enough to keep the error within some bounds. The analysis isn’t

trivial though, because of the different modeling techniques involved, and also because

the processes are modifying variables at the same time. Chapter 4 gives some more

detail on this.

2.3 The Knowledge Base

The knowledge base, as described in [12] provides a unified access for whole cell simula-

tions. At the moment of writing this thesis it is only available forMycoplasma genitalium,

but the purpose is to provide a platform that can host data for many cells. With the

Matlab code available on Github, compiled versions of it also for download, the idea is

that at one point people select the material they need, assemble it together with their

own models and simulate the generated model.

The knowledge base contains data about compartments, chromosomes, transcription

units, genes, chromosome features, metabolites, proteins, reactions, transcriptional reg-

ulations, pathways, stimuli and all quantitative parameters needed for the simulation.

In addition, though this is somewhat model-specific and not really organism-specific,

the knowledge base contains information about the states and processes. This informa-

tion isn’t about the real content of the corresponding Matlab file, but just a comment

on what the process / state does and which parameters and reactions it uses. Further



Chapter 2. A Detailed Description of the Karr Model 15

modifications of the platform will most likely include source code as well, and custom

plug and play of processes and states.

It is possible to generate Matlab objects from the knowledge base via some classes in

the framework. However, it often is easier to take a standard object and modify it using

the online modification form [13]. This form produces an Xml file that specifies the

parameters to be changed and is applied before the simulation starts. It is especially

valuable when running many simulations in parallel, as parameter modifications get easy

when using this technique.

The knowledge base was originally written in php and has now been rewritten by

Jonathan Karr using the Python [15] framework Django [16]. For this reason, there

is a lot of redundant code on the web, also for setting up and communicating with

the underlying MySql database [17]. In order to integrate the knowledge base into the

framework developed in this thesis, a thin database access layer on top of Scala [18] was

written as well. As the background database changes fast, it might be advisable to just

use the web interface though. It is able to produce database contents in Json [19] and

Xml [20], however, downloading the whole database is time consuming.

2.4 Analysis and Visualization

The analysis tools that come with the simulator perform analytic tasks on the simulation

output to search for interesting properties of the cell evolution. They are also written

in Matlab and provide measures for general cell behavior for model verification. There

is also an extensive visualization suite that can be found on the wholecell website [21].

It shows different simulation behaviors in an intuitive way and can be used to display

any data generated by simulations. Biological system analysis is not considered further

in this thesis, as it is a huge topic in itself.

2.5 Strengths and Weaknesses of the Model

Jonathan Karr’s whole cell model is an impressive feat. The work and information that

flowed into it is enormous, it combines research from over 900 papers, including over

1900 parameters, the complete set of genes of Mycoplasma Genitalium and much more.

As stated in [1] it has a predictive capacity, allows to state novel hypotheses, provides a

fast means to make biological discoveries and helps designing in a rational way.

However, its huge complexity is also the biggest hindrance to get started with the model.

As the Matlab code is really verbose and redundant, mixes simulation with model logic,



Chapter 2. A Detailed Description of the Karr Model 16

allows anything to access everything and uses complicated matrix accesses all the time,

just to get an understanding of the model takes a long time. The model and simulator

are strictly bound to Matlab which requires licences for simulation. Finally, there is no

theoretical base for the simulator assumptions (of the 1 second time step, the random

ordering, splitting of metabolites and so on).

In this thesis some of the points are tackled, new ideas are tested, a theoretical framework

is developed and finally implemented and analyzed.



Chapter 3

A Formal Description of Modular

Simulations

3.1 Existing Modular and Distributed Models

There is a huge range of modeling techniques available: dynamical systems, differential

equation models, Boolean networks, stochastic models, flux balance analysis, finite au-

tomatons, Petri nets and many more. The models of interest in this thesis are the ones

which can be simulated in a distributed manner. Trivially this includes a lot of network

models (though the distributed simulation of them doesn’t always make sense) but also

differential equations for example, which can be modularized by calculating immediate

steps in a distributed manner [22] or even by using more elaborate tricks like distribu-

tion of the ODE solution vector [23]. Also, there is some research being done on ways

to modularize existing models - primarily for analysis purposes, but also to simulate in

distributed manners. This is especially viable for huge networks as can for example be

found in biological reaction pathways [24].

Of particular interest for modular simulation are techniques that allow integration of

various different modeling techniques. The main purpose of such techniques is to allow

a modeler to choose a favorite modeling technique for each component in the system

and to build a bigger system by selecting and aggregating different components.

3.2 Formalizing the Karr Model

The Karr model is primarily sequential with some techniques to help achieve fairness

between processes. Apart from running the processes in random order at each time step,

17



Chapter 3. Formalizing Modular Simulations 18

the main technique used in this respect is pre-allocation which splits up (high-frequency)

resources and assigns them to different processes for a simulation round of ∆t. High-

frequency in this respect means parts of the simulation state that are often accessed by

many processes within ∆t (for a more detailed discussion see section 3.2.1). In order for

this to be possible, processes have to specify a requirements function that denotes the

current need or flux for each resource. Resources are then distributed proportional to

the requirements of the different processes.

Another possibility for processes to introduce changes into the system are so-called side

effects. They have been introduced to reduce coupling between processes. A side effect

is of additive nature and is integrated into the system after the process has finished exe-

cuting. However, side effects can easily also be implemented by the general architecture,

as each process has exclusive access to the whole simulation state (with exception of

metabolites as those are split). For the following formalization the notion of side effects

and general change on the system are unified.

As the requirements function has to be specified for each process in addition to the

evolve function and because processes then only get their share of the whole system to

work upon, several new techniques based on the common formalism are developed and

tested in this thesis. The change merging technique for example merges the results of

different processes into a consistent overall result after each ∆t. This is done by an

intersection oracle that has access to the complete simulation state (however, this can

also be implemented in a completely distributed way for efficiency).

3.2.1 The Building Blocks of the Karr Model

This section introduces several common terms across different methods of modular sim-

ulations.

As already mentioned before, we basically have state variables and processes. In addition,

in the Karr model, there are states, side effects and the global simulation object. For

the formalization it is important to notice several things though:

• States provide bundling of resources (comparable to namespacing), but are of no

relevance to the formal arguments and will thus not be included in the following

outline.

• Side effects can easily be described by the general way processes interact with the

state, as processes have complete access to all state variables at all times. Also,

the mechanics of processes can be completely described in terms of side effects



Chapter 3. Formalizing Modular Simulations 19

(thought a little more generalized than in the Karr simulation), which will be used

in the formalism.

• The simulation object is an all-knowing ‘oracle’. It is considered as thus in the

formalism, as long as applicable (later, in distributed versions, the simulation

object will be distributed too).

A state variable v is any modifiable variable within the model. This can for example

be a copy number of a metabolite (described by an integer) or a piece of the genome (a

String), a link from a ribosome to a certain part on the DNA (a reference) and many

more. In the Karr model, most variables are Integers representing copy numbers of

elements in the cell, but some are Strings and Doubles as well. For the formalization, a

state variable si is any variable that can be changed by process interaction:

vi(t) ∈ S , i ∈ {1, . . . , n} (3.1)

Where S is the state space of the variable, e.g. R or {true, false}.

There is a special type of state variables, called resources. A resource rj(t) ∈ S is a

variable that can be split into pieces which are distributed over processes:

rj(t) ∈ S , j ∈ {1, . . . ,m} (3.2)

In the Karr model this happens with variables in the Metabolite state. Those variables

are all Integers denoting copy numbers of metabolites. At the beginning of a simulation

round they are distributed proportional to some requirements of each process. Distri-

bution in this sense means giving fractions of the total Integer value to each process

Pk:

rj,k(t) = αj,k(t) ∗ rj(t),
∑

k

αj,k(t) = 1 (3.3)

The global state vector S(t) contains all state variables and resources:

S(t) =

























v1(t)

...

vn(t)

r1(t)

...

rm(t)

























(3.4)



Chapter 3. Formalizing Modular Simulations 20

For the purpose of easier notation there are two sub-vectors of S(t): V (t) and R(t),

denoting variables and resources respectively. The state vector can thus be written as

S(t) = V (t)||R(t) (using the vector concatenation formalism where vectors are regarded

as lists).

A process Pk ∈ {P1, ..., Pp} is an encapsulation of functionality. The primary function is

Evolve(·) which produces a new state Sk(t+∆t) of the simulation system after a time

period ∆t starting from initial conditions S(t) at time t. S again denotes the space that

resources span:

Pk.Evolve : Sn × R× R→ Sn

(S(t), t,∆t)) 7→ Evolvek(S(t), t,∆t) (3.5)

Where Evolvek(·, ·, ·) is the concrete evolve function implementation that transforms

the state vector. A process with this simple definition doesn’t have any state itself.

However, it is important to note that in the current model private state for processes is

easily possible by just writing it in the global state vector. The global state vector has

some benefits for argumentation as we will see later.

An addition needed to the process definition in order to comply with the Karr model

are requirement functions. A requirement function denotes the change a process would

like to introduce to the system before it really does so. In the Karr model, this only

happens for resources, where processes denote how much of a given resource they would

like to consume. Another noteworthy point, requirement functions are calculated in

saturated regions (meaning infinite supply of resources), thus decoupling the distributed

resources from their actual values (they only depend on variables). This is done to

reduce computational overhead. However, the requirement functions could also just be

an evaluation of Evolve(·, ·, ·). The formal definition of the requirements function is

thus:

Pk.Require : Sn × R× R→ Sn

(S(t), t,∆t)) 7→ Requirek(S(t), t,∆t) (3.6)

With the two basic components of variables and processes noted down, let’s introduce

some special components.

Variables (and thus also resources) can be outfitted with restrictions. A restriction is a

function that evaluates to true or false for a variable at a given time. It evaluates to



Chapter 3. Formalizing Modular Simulations 21

Type Difference Definition

Numeric (Double, Integer, ...) old ⊲ new = new − old
Boolean old ⊲ new = new
Char old ⊲ new = new
String old ⊲ new = if (length has changed) then new

otherwise Diff(old, new) Could also use some short-
est distance algorithm.

List Elemental difference

Table 3.1: Change definition for various primitives

true if the restriction isn’t violated, to false otherwise:

R : S → {true, false} (3.7)

An example restriction could be that the variable value may never fall below zero (si(t) 7→

si(t) ≥ 0). We can use restriction functions to determine violations in the model and to

integrate the state changes of different processes. A violation is a restriction violation,

i.e. a restriction that evaluates to false. Requirements are of particular interest when

gradually integrating changes into the global state vector.

In order to make the formalism a little more approachable, the notion of a change is

introduced. A change Ck has the same structure as the state vector S(t) ∈ Sn and

describes the change a process Pk would like to perform on the simulation state during

t+∆t. The change a process calculates is basically the collection of all different smaller

changes that happen on the simulation state during the execution of Evolvek(·, ·, ·). In

the above definition of a process the difference between the old and new state Sk(t +

∆t)− Sk(t) corresponds to the change Ck. As the difference operator can only be used

for numeric variables, it makes sense to introduce the more general operator ⊲ for state

difference to calculate changes. The difference in this sense is generalized to apply for all

primitive objects, see table 3.1. The generalization is not complete and can be extended

to be defined on arbitrary complex objects. The change vector then becomes:

Ck(t) = Sk(t) ⊲ Sk(t+∆t) (3.8)

A change on the system can either be linearly interpolated over ∆t or happen at a user

defined instant (so-called atomic change). As can be seen, the important approximation

made here is that the changes on the system state within ∆t are linear. This allows for

faster reintegration of different processes, especially in the case where violations happen.

Table 3.2 summarizes the introduced formalism. Using this general formalism the fol-

lowing sections show interesting properties and algorithms that build on those.



Chapter 3. Formalizing Modular Simulations 22

Name Formula Description

State Variable si(t) ∈ S Anything that can be changed during
the process of simulation.

Resource ri(t) ∈ S Special version of variable that can be
shared between processes (e.g. addi-
tive).

State Vector S(t) = V (t)||R(t) Global vector containing all variables
and resources.

Process Pk : Sn × R× R→ Sn Function that evolves the state.
Requirement Rk : Sn × R× R→ Sn Requirement function of process P that

denotes how much resources a process
wants to consume.

Restriction R : S → true, false Restriction on variable.
Change Ck(t) = Sk(t) ⊲ Sk(t+∆t) Change that process introduces on sys-

tem.

Table 3.2: Terms used in the ubiquitous description of modular models

3.2.2 Connecting the Blocks

In the Karr whole cell models, the processes and states are linked in a quite straight

forward way (see also figure 2.2). Variables from the Metabolite state (which denote copy

numbers of metabolites) are treated as resources from the above definitions. The rest of

the state vector are simple variables that can only be accessed by a single process at a

time. Algorithm 1 describes the execution of the Karr model (without side effects, due

to reasons described above, mainly because side effects can be seen as additive changes

on variables).

Algorithm 1 The Karr Model Execution Algorithm

Precondition: S[t] the state vector with initial values S[0]. It will be calculated and
filled in for t ∈ {1, ..., tMAX}. P the set of processes Pk

1: function RunSimulation(S[0])
2: for t← 1 to tMAX do

3: S[t] ← S[t− 1]
4: for Pk ← P1 to Pp do

5: Reqk ← Pk.Require(S[t], t,∆t)

6: for Pk ← P1 to Pp do

7: Rk ← Split(R[t], Reqk, {Req1, ..., Reqp}) ⊲ Split(·)

8: for Pk ← Permutate(P ) do
9: (V [t], Rk) ← Pk.Evolve((V [t]||Rk), t,∆t)

10: S[t] ← (V [t]||Merge({R1, ..., Rp})) ⊲ Merge(·)

11: return S

As is visible, the algorithm 1 needs two more functions to work, Split(·) and Merge(·).

It turns out those two functions are of particular interest as different implementations of





Chapter 3. Formalizing Modular Simulations 24

First of all, the notion of process and state is reduced to the following: A state vector

consisting only of resources (everything is distributable now, as this allows complete par-

allelism), a set of processes which define an evolve function and the notion of restrictions

that can be checked on resources. The state vector thus is:

S(t) =









r1(t)

...

rn(t)









(3.12)

This vector is defined for various t, but is usually not continuous. The processes define

an evolve function that returns a change they would like to introduce on the system:

Pk.Evolve : Sn × R× R→ Sn

(S(t), t,∆t)) 7→ Ck (3.13)

Where a change is defined as:

Ck(t,∆t) = S(t) ⊲ S(t+∆t) (3.14)

Restrictions are exactly the same as before, defined as:

R : S → {true, false} (3.15)

In practice, the simulator can enforce processes to specify special functions, like the

requirement function in the Karr model. This is not generally required though. The

following section will elaborate on other strategies to simulate whole cell models.

3.4 Different Implementations of Split(·) and Merge(·) and

General Algorithms to Intersect Changes

With the basic working of the Karr model formalized and explained, let’s have a look

at different Split(·) and Merge(·) methods, then extend the formalism a little and use

that to develop different methods to integrate modules into a bigger simulation.

In algorithm 1 the functions Split(·) and Merge(·) play an important role. The first

thing to note is that they both only act on resources, variables are untouched. This

leads to some important questions: what qualifies a variable as a resource? What does

splitting of a resource mean and why can’t variables be treated the same way? Can we

treat all variables as resources?



Chapter 3. Formalizing Modular Simulations 25

For one can note that if there were only resources, all the processes could easily run in

parallel. A possibility thus is to build models only from resources. However, this is not

always possible as, in a general model, people might want to use non-shareable variables

like Booleans and strings. A second possibility thus tries to handle every variable as

resource. For this the splitting and merging functions have to be adapted, which will

now be discussed.

Let’s first discuss possibilities for Split(·) methods. Resources can be split equally, pro-

portional to some need, randomly, not at all or by some arbitrary function. The equal

splitting seems to be fair, however there might be processes that only act on a small

subset of resources and thus don’t need shares of all resources. Also, in biological sys-

tems different processes will use up more resources faster than others. The proportional

splitting is used in the Karr model, where the need (requirements) are calculated by

a function specified by every process. The drawbacks are discussed in section 4.1.2.

Summing them up, the system consumes less resources than a monolithic system. Ran-

dom splitting primarily makes sense for “unsplittable” resources as those have to be

distributed somehow. For resources like metabolites a random assignment will have im-

plications on the system except for very small simulation steps. Arbitrary functions for

splitting can have pros and cons, but will mostly have to be implemented using some

knowledge about the system, which is not in the spirit of this thesis, where processes

are seen as black boxes.

This leaves proportional splitting with the addition of random splitting of variables

and no splitting at all, further denoted as pre- and post-allocation. The possibilities

for the Merge(·) function depend on the splitting algorithm, but there are many more

possibilities for merging.

3.4.1 Pre-Allocation Strategies

In the case of proportional / random splitting as discussed above, the assumption is that

resources are of additive nature. A merge function thus needs to be like the Karr merge

function for all additive resources:

Merge({R1, ..., Rp}) =
∑

k

Rk (3.16)

For all other resources, no merging is necessary, as they have been distributed randomly.

Thus only one process per time step ∆t has access to the resource.





Chapter 3. Formalizing Modular Simulations 27

resources and for systems with a small time step (where violations are not common),

but shouldn’t be considered otherwise.

Algorithm 2 Smash Strategy

Precondition: S[t = 0] the initial state, P the set of processes Pk, tend the maximum
simulation time and ∆t the time step

1: function RunSimulation(S[0])
2: for t← 0 to tend in steps of ∆t do
3: for k ← 1 to p do

4: Ck ← Pk.Evolve(S[t], t,∆t)

5: S[t+∆t] ← Merge({C1, ..., Cp})

6: return S

7: function Merge({C1, ..., Cp})
8: for i← 0 to m do ⊲ Iterate through resources
9: if Si is additive then

10: Si ← C1,i + ...+ Cp,i

11: else

12: Si ← RandChoose(C1,i, ..., Cp,i)

13: return S

3.4.2.2 Change Merging Strategy

Algorithm 3 describes the change merging strategy. As this strategy is mathematically

more involved, more details are given in the text below.

Processes produce a change on the system given an initial state, a time and a delta

time by their Evolvek(·) function. To keep the system initially simple, we assume the

simulator farms out at t and collects changes at t+∆t for all processes synchronously.

All changes together now form the change or flux matrix Φ : m × p (remember that a

change Ck is a vector ∈ Sm):

Φ(S(t), t,∆t) = (C1, C2, ..., Cp) =















c1,1 c1,2 . . . c1,p

c2,1 c2,2 . . . c2,p
...

...
. . .

...

cm,1 cm,2 · · · cm,p















(3.17)

This flux matrix sometimes will lead to violations of the system. Namely for every

resource rj all associated violation functions vj,k can be evaluated and violations noted.

The merging is obviously a lot more difficult than in the pre-allocation case. We can

now use the fact that the matrix describes a flux though, so the violations happen at



Chapter 3. Formalizing Modular Simulations 28

Algorithm 3 Change Merging Strategy

Precondition: S[t = 0] the initial state, P the set of processes Pk, tend the maximum
simulation time and ∆t the time step

1: function RunSimulation(S[0])
2: for t← 0 to tend in steps of ∆t do
3: for k ← 1 to p do

4: Ck ← Pk.Evolve(S[t], t,∆t)

5: S[t+∆t] ← Merge({C1, ..., Cp})

6: return S

7: function Merge({C1, ..., Cp})
8: Φ ← [C1, ..., Cp]
9: Φn ← [C1, ..., Cp]

10: t ← 0
11: while t < ∆t do
12: x ← Ones(p) ⊲ Create array of ones
13: tv ← ∆t− t
14: for i← 0 to m do ⊲ Iterate through resources
15: if Violation in Si then

16: tv ← min(tv, tv,i)
17: else

18: Temporarily remove row Φi from Φ

19: S ← AdvanceSystem(tv,Φn)
20: t ← t+ tv
21: if any violation then

22: Φn ← Φ · LinProgSolve(max(x),Φ · x ≥ 0, x ∈ [0, 1])

23: return S

fixed times. Let’s denote the time of the first violation with tv. The first violation can

be calculated as the first time t when:

V (c1,1 · t, c1,2 · t, ..., c1,p · t, s1) = true |

V (c2,1 · t, c2,2 · t, ..., c2,p · t, sp) = true |

. . . = true |

V (cm,1 · t, cm,2 · t, ..., cm,p · t, sm) = true

This finding of t can be sped up as we assume the flux within ∆t is constant, i.e. the

system is linear during this time, so searching for violations is quite straightforward.

After the first violation has been detected, the flux matrix could be reduced to zero,

however, there is a better solution which involves recalculating the flux matrix so that

no violations occur any more (up to a next violation tv′).



Chapter 3. Formalizing Modular Simulations 29

Let’s first look at additive resources. The flux of those resources has to satisfy the

following requirements at a violation point tv:

maximize x

subject to Φ · x ≥ 0

and x ∈ [0, 1]

Which is a problem that can be solved numerically using linear programming. The flux

matrix Φ is then multiplied by the vector x which will yield a new flux matrix without

violations up to tv′ . The algorithm can thus be applied repeatedly until the time interval

∆t has passed. This allows for arbitrary changes to be pushed through the system in a

time interval ∆t (the discussion if that is a good thing to do follows later). Figure 3.3

shows an exemplary system consisting of three resources. Even though the time step

∆t is 1 second, after 0.5 and approximately 0.8 there are changes in the fluxes, as the

resources otherwise would fall into the negative.

Figure 3.3: The change merging strategy, which adapts current fluxes to satisfy all
restrictions but still keeping the flux maximal

Worth to note is also that the linear programming problem above may not have a solution

except x = 0. However, this is a valid and acceptable solution within the simulation.

Also, the linear programming problem only has to be solved for conflicting and inter-

acting resources, i.e. the flux matrix Φ can be reduced before searching for a solution.

This strategy has an interesting property in that it allows to force an arbitrary time

step whilst still making sure that processes are treated fair. It is comparable to the Karr

strategy but using post-allocation. However, the recalculation of the change matrix can





Chapter 3. Formalizing Modular Simulations 31

Algorithm 4 Synchronization Points

Precondition: All ∆t’s multiples of each other. S[0] the initial state, t = 0 the simu-
lation time, ∆t an array of ∆t’s of the processes, P the set of processes Pk

1: function RunSimulation(S[0])
2: for t← 0 to tend in steps of ∆t do
3: {C1, ..., Cp} ← Changes(S[t],∆t, {P1, ..., Pp})
4: S[t+∆t] ← Merge({C1, ..., Cp})

5: return S

6: function Changes(S,∆t, {Pa, ..., Pb})
7: for Pk ← Pa to Pb do

8: Ck ← Pk.Evolve(S, t,∆t)

9: while (V ← V iolators({Ca, ..., Cb})).size 6= 0 do

10: {Cx, ..., Cy} ← Changes(S,∆t/2, V )
11: S ← ApplyChanges(S, {Cx, ..., Cy},∆t/2)
12: {Cx, ..., Cy} ← Changes(S,∆t/2, V )
13: {Ca, ..., Cb} ←Merge({Ca, ..., Cb}, {Cx, ..., Cy})

14: return {Ca, ..., Cb}

Where ApplyChanges(·) applies changes to the state (for a given ∆t) and Merge(·)
selects max one change vector at any given time for any given process.

The algorithm isn’t parallel, but provides a preliminary step for the parallel algorithm

following in short. At thus it isn’t highly efficient (especially if processes with small ∆t’s

take long to simulate) and not recommended for real use.

3.4.2.5 Distributed Strategies

The final algorithm incorporating all good things from the above ones is algorithm 6,

distributing the processes, allowing them to run on completely different time scales. It

could further be distributed by additionally distributing the state over multiple instances.

Also, within the strategies there is a lot of optimization possible, e.g. by selectively

sending only parts of the state. Figure 3.5 displays the algorithm graphically. Orange

are the parts where the strategy forces modules to use a smaller time step in order to get

to a common synchronization point which then is used to let processes run in parallel

again. The integration happens by slicing, where changes with large ∆t’s are sliced up

and integrated alongside the shorter ones.

Algorithm 6 provides an accurate, completely distributed variant to simulate models.

It provides a possibility to hook uchronic execution as described in [25] (which lets

processes guess the changes of other processes) and runs on arbitrary time scales. It is





Chapter 3. Formalizing Modular Simulations 33

quite resource intensive and should thus be used for models where the individual process

simulation times are high.

Algorithm 6 Distributed with Positive Time Step Adaption

Precondition: S[0] the initial state, t = 0 the simulation time, ∆t the ∆t’s of the
processes, P the set of processes Pk, α the increase factor with which the simulator
tries to increase ∆t’s every time step, ∆tmax the maximal allowed time step

1: function RunSimulation(S[0])
2: tprev,k ← t ⊲ Set up simulation
3: tcurr,k ← t
4: tnext,k ← t+∆tk
5: for k ← 1 to p do

6: running ← {k, t,∆tk}
7: Pk.Evolve(S[tcurr,k], t,∆tk)

8: function Receive(Ci)
9: V ← V iolations({C1, ..., Cx})

10: if V then

11: ∆ti ← (tv − tcurr,k)/2
12: tnext,i ← tcurr,i +∆ti
13: for Pk ← V.V iolators− {Pi} do
14: ∆tk ← tcurr,i − tprev,k +∆ti
15: tcurr,k ← tprev,k
16: tnext,k ← tprev,k +∆tk
17: StopAndClearRunning(k)
18: running ← {k, t,∆tk}
19: Pk.Evolve(S[tcurr,k], t,∆tk)

20: running ← {i, t,∆ti}
21: Pi.Evolve(S[tcurr,i], t,∆ti)
22: else

23: for tx ← [tcurr,i, tnext,i] do
24: S[tx] ← Merge({C1, ..., Cx})

25: ∆ti ← min(∆ti ∗ α,∆tmax)
26: tprev,i ← tcurr,i
27: tcurr,i ← tnext,i
28: tnext,i ← tcurr,i +∆ti
29: idxmin ← mink′s(tcurr,k)
30: for id← idxmin do

31: ∆tid ← min(∆tid,min(tcurr \ idxmin)−∆tid)
32: running ← {id, tcurr,id,∆tid}
33: Pid.Evolve(S[tcurr,id], tcurr,id,∆tid)

34: t ← min(tcurr)
35: if t > tmax then

36: StopSimulation()



Chapter 3. Formalizing Modular Simulations 34

3.4.3 An Informal Comparison

At a first glance the preallocation mechanism seems like a good choice from a point

of efficiency, the whole search for a non-violating merge within a time interval ∆t falls

away, the integration of different changes reduces to a simple sum. Things get more

complicated though, as there are two main concerns:

• Processes need to specify a “requirements function”. This function can be the

function Ci itself, however this results in double calculations every time step.

• Processes see “sub-state” of the whole simulation, mainly the resources they get

assigned. This can be changed by allowing them to read as much as they want but

only to write back the assigned resources.

For those reasons, other strategies were developed. The change merging strategy which

basically models the Karr one without pre-allocation suffers from a similar problem

of computational overhead. For this reason, strategies with time step adaption are

preferable.

A further problem with all modularized strategies is that within ∆t processes don’t know

anything about consumption and production of other processes, thus there will always

be an error introduced into the system. This is covered in more detail in chapter 4.



Chapter 4

Properties of Modular

Simulations

4.1 Correctness: Implications of Karr’s Split(·) andMerge(·)

In the Karr model, split and merge is only applied on metabolites. Metabolites in

this sense means their copy numbers, which is the biological term for count. That

means the functions can be completely additive, as those resources are used by different

processes in reality as well. There is one big benefit of splitting them in advance:

Resource restrictions are never violated, as long as processes themselves don’t violate

the restriction. For this to make sense, let’s look at the single restriction on metabolites:

RMet : S → {true, false}

rj(t) 7→ rj(t) ≥ 0 (4.1)

This means that any metabolite resource in the Karr model always has to be strictly

positive. The physical interpretation is that molecules can not exist in negative amounts.

The implication of the additive distribution now is that if every process itself respects

this restriction, the restriction is globally respected. However, there are two points

worthy of discussion here:

• Why are metabolites split? The architecture relies on sequential processing of

processes anyways, so why not treat metabolites as variables as well?

• What are the implications of the splitting as it is used in the Karr model? In

specific what is the effect of processes seeing only a sub-state of the model state?

35



Chapter 4. Properties of Modular Simulations 36

4.1.1 Why Metabolites Need to be Split

The answer as stated in the supplementing documentation of [1] is that metabolites are

heavily shared between processes. The authors argue for the necessity of it by providing

counter examples:

1. Suppose the same algorithm is used, but Split(R[t], ·, ·) = R[t], meaning that every

process gets the complete resource vector. The Merge(·) function is adapted so

it sums the changes of each process and applies this total change to the previous

state. In total the processes could now violate the restriction RMet, namely use

up more than the available metabolites.

2. Suppose metabolites are treated as variables (not resources) and processes are

not permuted each round. The first process can now always use up all of the

metabolites in a given round, depriving other processes of their intended effect on

the system.

3. Suppose metabolites again as variables, but random execution of processes. This

would result in high fluctuations, as processes in the beginning would deplete

resources making the system uncontrollably oscillate at the ∆t interval.

The main point in splitting metabolites is to ensure process fairness. This is only required

for so called metabolites, as those are involved in high-frequency reactions. This basically

means that at some given point during the simulation:

δr

δt
≤ −r(t) (4.2)

Which means that during a discrete simulation interval ∆t = 1s the resource would be

completely used up. This forms the notion of high-frequency variables and determines

if a variable needs to be split (of course only for restricted variables). The concrete

strategy to determine which variables can and have to be shared depends on the system,

but could generally be implemented using some sensitivity analysis.

4.1.2 Effects of Dividing State

The effects of the splitting technique applied has a huge effect on the system. Let’s take

a first look by examining a simple mass action system.



Chapter 4. Properties of Modular Simulations 37

4.1.2.1 Consumption Errors in a Simple System

The system
δr(t)

δt
= c1 · r(t) + c2 · r(t) (4.3)

is to be split in two subsystems, whereas each has the requirement ci. The resulting

system is:

δr1(t)

δt
= c1 · α1 · r(t) (4.4)

δr2(t)

δt
= c2 · α2 · r(t) (4.5)

δr(t)

δt
=

δr1(t)

δt
+

δr2(t)

δt
= (c1 · α1 + c2 · α2) · r(t) (4.6)

With the (Karr like) intuitive definition for αi =
ci

c1+c2
(a mathematically correct solution

would use α1 =
c1

c1−c2
and α2 =

c2
c2−c1

, however, this would make one resource negative),

the system results in a reduced system as follows:

δr(t)

δt
=

c21 + c22
c1 + c2

· r(t) (4.7)

As is visible, the system in 4.7 doesn’t exactly correspond to the initial system in equation

4.3. Figure 4.1 shows c1+ c2 (blue) and
c2
1
+c2

2

c1+c2
(yellow). As can be seen, the split system

is hugely sensitive for certain values of c1 and c2. However, there are some restrictions

on ci, as mentioned in section 4.1.1 (resulting from the statement that variables are split

when at any t: δr
δt ≤ −r(t)):

(c1 + c2) ≤ −1 (4.8)

ci ≤ 0 (4.9)

Applying those restrictions to figure 4.1 shows that we are in a region where under-

consumption happens, i.e. the split system will consume less resources than the com-

bined system. Figure 4.2 shows the effect on the system of 4.3 (red) and 4.7 (blue)

with an arbitrary initial resource availability of 50. An interesting fact is also that the

under-consumption in the simple system is independent of the time step ∆t. In reality,

momentarily consumption depends on more than a constant, giving the time step again

some influence depending on the system (usually the smaller the more accurate).



Chapter 4. Properties of Modular Simulations 38

4.1.2.2 Tackling the Problem of Under-Consumption

In order to prevent under-consumption, every process could include a correction factor

as follows:

βi =
c1 + c2

ci
(4.10)

Thus the system becomes:

δr1(t)

δt
= c1 · α1 · β1 · r(t) = c1 · r(t) (4.11)

δr2(t)

δt
= c2 · α2 · β2 · r(t) = c2 · r(t) (4.12)

Figure 4.1: Effects of splitting state

Figure 4.2: Effects of splitting state in the exemplary system



Chapter 4. Properties of Modular Simulations 39

And the resulting system corresponds to the initial one. Basically, this is the strategy

used in all post-allocation mechanisms, as every process gets the whole unmodified state.

This, however, leads to so-called over-consumption for any ∆t > 0. The reason for this

is simply that processes only synchronize every ∆t and thus in reality use up much more

resources than the overall system should. The influence of the step size allows to bound

this error though and is a major improvement as compared to the split system. Figures

4.3 and 4.4 show the difference of the systems. As is visible, a numerical solution of the

pre-allocation system even gets further away from the real system with a smaller time

step.

Figure 4.3: Effects of splitting resources (∆t = 0.25), blue is the original system,
green the split (pre-allocation) one and red the post-allocation one

Figure 4.4: Effects of splitting resources (∆t = 0.05), blue is the original system,
green the split (pre-allocation) one and red the post-allocation one



Chapter 4. Properties of Modular Simulations 40

4.1.2.3 Generalizing Consumption Errors on Arbitrary Functions

A generalization on arbitrary black box systems is difficult. However, it can be stated

that no matter what, a split system always only sees a part of the real state. At thus

systems working on a split state will never behave like a monolithic system. In most

of the cases under-consumption and under-production will occur. The lack of a overall

compensation for this effect was a key factor in the development of post-allocation

strategies in this thesis.

4.2 Domain Applicability of Modularized Simulations

This section discusses when it makes sense to have a modular simulation. It also looks

at methods for automated modularization. There are two main criteria that need to be

fulfilled in order to split a system into various modules:

1. The system must have parts that can be decoupled without too much interaction

between modules. This means modules shouldn’t access the same variables or

show high sensitivity in common variables.

2. The merging of changes (the whole simulator logic) has to take noticeably less

time than the simulation time of independent modules.

4.2.1 Non-Interacting Systems

As the splitting of systems introduces mathematical errors in the system (see also section

4.1), the system should be split along a line that minimizes the module interdependen-

cies. Often, the splitting is given by the modeler, which might not be optimal. This

doesn’t mean the technique should not be applied, however it will usually lead to smaller

time steps as the errors get too big otherwise.

In order to give some mathematical backing on what a good splitting of a system can

be, this section presents a crude method to modularize processes. First, let’s introduce

the sensitivity matrix (equal to the Jacobian matrix for systems of ODEs):

Jk =













∂C1

∂s1
· · ·

∂C1

∂sn
...

. . .
...

∂Cn

∂s1
· · ·

∂Cn

∂sn













(4.13)



Chapter 4. Properties of Modular Simulations 41

This matrix is defined for all processes (k ∈ 1, . . . , p) and calculated by performing a

sensitivity analysis on the system. The analysis can for example be performed by fixing

all but one variables and inspecting the response of the system to changes of the free

variable. By summing up the absolute values in columns of Jk we get the process’

sensitivity dependency on a single resource. This yields a row vector of dependencies:

Depk =
[

ds1 · · · dsn

]

(4.14)

Doing this for all processes and putting the resulting vectors in a matrix results in the

dependency matrix Pdep (p× n):

Pdep =









d1,s1 · · · d1,sn
...

. . .
...

dp,s1 · · · dp,sn









(4.15)

Starting from the Jk matrix again, we now sum up the absolute values of the rows, this

yields the influence vector of a process:

Inflk =









is1
...

isn









(4.16)

Putting all the influence vectors in a matrix results in the influence matrix Pinfl (n×p):

Pinfl =









i1,s1 · · · ip,s1
...

. . .
...

i1,sn · · · ip,sn









(4.17)

The above two matrices describe how different processes influence and depend on vari-

ables. Multiplying them will give the inter-process dependency matrix that denotes

how much a process depends on another process. This can be similarly done for single

variables by filling matrices Pdep and Pinfl not with the sums as above but with a sin-

gle variable only. However, here we only look at the complete state dependencies (for

further reference look at [25], which presents a discussion originated from this thesis).

The clustering matrix Pclus is defined as follows:

Pclus = Pdep · Pinfl =









c1,1 · · · c1,p
...

. . .
...

cp,1 · · · cp,p









(4.18)



Chapter 4. Properties of Modular Simulations 42

In the clustering matrix c1,4 would be read as “Amount with which process 1 depends on

process 4”. An optimal splitting of a system consists of modules that lead to a clustering

matrix which has elements only on its diagonal. For obvious reasons this would mean

that the modules are completely independent, which is usually not feasible or desired,

but it is already good if the clustering matrix has large elements on its diagonal and

small ones in the rest.

The clustering matrix also allows discovery of highly shared resources, if created for

every single variable. Resources are discovered by searching for non-diagonal elements

with large values. Once found, a resource might be shared using one of the methods

described in chapter 3.

The clustering matrix also allows to optimize communication times. This can be done by

applying a clustering algorithm to the matrix, which will directly show how fast different

processes have to communicate (in terms of unit time, which has to be determined by

other means, e.g. error analysis). As an example, the following system is studied:

X ′(t) =









−1 2 1

−1 0 1

1 −3 −1









·X(t) X(t) =









x(t)

y(t)

z(t)









(4.19)

Assume a modeler specifies the above system with the following four processes (with

X(t) = X1(t) +X2(t) +X3(t) +X4(t) the state vector):

X ′

1(t) =









0.5 1 0

0 0 −0.5

1 −1 0









·X1(t) X ′

2(t) =









0 0 0

−1 0 0

0 −1 0









·X2(t) (4.20)

X ′

3(t) =









−1.5 0 1

0 0 0.5

0 0 −1









·X3(t) X ′

4(t) =









0 1 0

0 0 1

0 −1 0









·X4(t) (4.21)

Applying the above discussed method leads to a clustering matrix as follows:

Pclus = Pdep · Pinfl =















4.25 2.5 5.25 4

2 1 3 2

7.25 2.5 6.25 4

3 3 2 3















(4.22)

Figure 4.5 shows the resulting dendrogram (which comes from the clustering method,

in this case calculated using Mathematica’s DirectAgglomerate). It’s easy to see that

processes 1 and 3 have to communicate the most. Their results then need to be shared



Chapter 4. Properties of Modular Simulations 43

with process 4 and finally process 2. This can be used to determine synchronization

points for different processes.

Figure 4.5: A dendrogram showing the modularization of a sample system

4.2.2 Heavy-Load Processes

A splitting of a system (from the computational point of view) only makes sense if the

gain from parallelization is higher than the price to pay for the process communication

and synchronization. The formulas for the two cases of distributed and non-distributed

computation are:

tnon−distr = nsteps ·
∑

k

tc,k (4.23)

tdistr = nsteps · (maxk(tc,k) + tm) (4.24)

Where nsteps is the number of steps for which the simulation runs, tc,k is the computation

time of process k and tm is the time needed for communication and synchronization.

Figure 4.6 shows a plot of the above formulas with values from the Karr model (see also

appendix A) and nsteps = 100. In the Karr model, a single step of one simulation second

takes about one physical second (
∑

k tc,k = 1), with most time needed by the replication

process (maxk(tc,k) = tc,replication = 0.31). As can be seen, as long as the communication

and synchronization time tm is below 0.7 seconds, the distributed version is faster than

the sequential.

For further analysis, dissection of tm is necessary. The time needed for communication

and synchronization depends heavily on the algorithm used. Making some assumptions

allows to do general reasoning, finer algorithms can lead to better results for distributed

algorithms though. We assume all processes always have to synchronize on all variables.

Synchronization time is assumed linear in the number of variables (as once the simulator

received all variables, it can be seen as summing up every one of them). In a first



Chapter 4. Properties of Modular Simulations 44

analysis, we assume no violations and time step adaptions (actually both are a way to

decrease simulation errors, and thus mostly independent of the distinction of distributed

vs non-distributed).

Every time step, all processes have to receive and send all their variables to the central

authority: 2·p·n·tsend. In addition, the simulator has to aggregate all variables: n·taggr.

This results in the following total overhead (as the simulator somewhat is a bottleneck

that only accepts sequential input of messages):

tm = 2 · p · n · tsend + n · taggr (4.25)

With the concrete message passing implementation, there are some optimizations that

happen. First, only one message containing all the variables needs to be sent. This

message is obviously larger, but the overhead of n single messages vanishes. Second,

processes actually only send and receive updates for changed and needed variables.

Third, the aggregation is trivial to parallelize for most algorithms. Further, tsend depends

on the actual network structure used. In this analysis, the focus lies on multicore

processors (messages don’t have to pass over a network).

For a system containing 2500 variables 2·n·tsend evaluated to 22 ns on an Intel Core2 Duo

(T9400) CPU with 4 GB of RAM. The aggregation of 2500 variables from 28 processes

took 93 ns (= n · taggr). The total expression evaluates to:

tm = 28 · 22ns+ 93ns = 709ns (4.26)

Figure 4.6: Total time for non-distributed (violet) and distributed (blue) simulations
as function of communication overhead tm in the Karr model



Chapter 4. Properties of Modular Simulations 45

In the real implementation there are other factors, like the time needed to copy variables,

the overhead introduced by the change method (of letting processes post desired changes

on the system), the memory needed for keeping copies of the state, time needed to

communicate with external programs (e.g. a Matlab simulation) and more. They would

clearly increase tm, however, they heavily depend on the implementation. Still, as the

final results show, their effects are also negligible compared to processes that individually

take up to 0.3 seconds for execution (at least for the implemented strategies and tested

systems).

4.3 Effective Dynamics / Time Step Adaption

As the whole splitting mechanism basically is a numerical solving strategy for large

systems, a lot of proven methods can be used to calculate time steps (though sometimes

they have to be adapted for the distributed system).

4.3.1 Single Process Time Step Adaption

Depending on the underlying modeling technique, time steps can be calculated for every

process independently. An exemplary method for ODEs solved with the Euler method

is described in appendix A (see also [26] for other and extended adaption techniques).

It calculates the function value at x(t + ∆t) two times, by using ∆t directly and by

applying ∆t
2 two consecutive times. The next step size is then determined via:

d = x(t+∆t)2 − x(t+∆t)1 (4.27)

∆ti+1 = 0.9 ·∆ti ·
ǫ

|d|
(4.28)

This ensures the local error will be bounded by ǫ. 0.9 is a safety constant to make sure

the next step is successful. Similar techniques exist for other numerical methods. For

stochastic processes for example, the duration until the next event can be calculated

and used as ∆t.

However, an important part that cannot be neglected is the dependency of different

processes on each other. This dependency will have an influence of the maximal time

step given some error bound.



Chapter 4. Properties of Modular Simulations 46

4.3.2 Multiple Process Time Step Adaption

Even though single processes can be controlled via local time step adaption, that doesn’t

ensure the global error stays within the ǫ bounds. The good news is that with the

techniques developed in this thesis, the error estimation and time step adaption can be

done in a modularized system just like in a monolithic one.

A simple idea is to let the simulator compute results for every module for time steps as

above (h and 2 consecutive times h/2) and do the same error analysis. This results in a

global time step that is applicable for all processes and proves the solution to stay within

some error. However, the time step is primarily influenced by the process requiring the

smallest time step. In a large system, such a global time step enforces too small time

steps for many processes.

Thus, it’s better to use the above results of the clustering matrix (see 4.2.1) to calculate

the different interdependent time steps of the modules. What the clustering matrix

basically tells is that for two close processes (they need to communicate a lot, as they

depend heavily on each other), their time steps have to be close together as well (if the

dependency is one-directional, the “master process” forces the dependent process time

step). We can thus bound the time steps of processes by processes they depend upon

and processes they influence. A process’ time step can maximally be a factor or fraction

of the distance of the processes in the clustering matrix. Thus given any two processes,

the one with the smaller time step forces the other to stay within a bound as given by

the clustering matrix.

Taken all into account, this also leads for a global strategy to determine time steps,

given some smallest time step of a given process. However, this only upper bounds the

time steps of all the processes and still allows for some freedom.

4.3.3 Violations

System violations provide a further technique that can be used to adapt time steps.

This time step adaption isn’t based on mathematical errors but rather model violations.

Violations are discussed in section 3.2.1. The method is simple: As soon as a violation

in the system is detected, re-run involved processes with a smaller time step, namely

the time step until the violation has happened.

Let’s denote the time of the first violation happening with tv and the set of involved

processes with V iolators. All the V iolators have associated tprev, tcurr, tnext and ∆t

(they denote the times of the previous calculated step, from tprev to tcurr, the times of



Chapter 4. Properties of Modular Simulations 47

the current step, from tcurr to tnext and the process’ time step). Processes now have to

recalculate their time steps as follows:

∆ti = tv − tprev (4.29)

They also have to update the respective times tprev, tcurr and tnext:

tprev = tprev (4.30)

tcurr = tprev (4.31)

tnext = tcurr +∆ti (4.32)

This works for any strategy that ensures that no process can cause violations before

tprev of any process, i.e. processes have to wait with their calculations until all processes’

current times tcurr are past their own tprev (at which time the process has the highest

priority as it would cause all other processes to wait for its completion).

4.4 Sensitivity

As processes in general are black boxes, sensitivity analysis follows previously researched

methods (for examples see [27] or [26]). Namely all variables but one are fixed in the

input state vector of a process. The one free variable is now modified (e.g. by applying

a step function) and all changes on the system recorded. This leads to the sensitivity

or dependency matrix as described in section 4.2.1. Of course, if the implementations

of the underlying processes are known, other sensitivity analysis methods can be used,

like the Jacobian for systems of ODEs.

As systems in general don’t have to be linear but can be of arbitrary complexity, for

maximal accuracy the sensitivity analysis would have to be repeated every time step,

forcing a recalculation of the whole clustering and step sizes. Depending on the underly-

ing model it’s enough to do the analysis only every now and again, as processes (e.g. in

biological systems) often can be approximated as linear systems on small time intervals.

The sensitivity can be used to modularize the system, but also as a general way to

characterize and argue about the model.

4.5 Efficiency

As some of the discussed techniques allow to lower bound the time steps of the overall

model (e.g. the change merging or smash fit strategy by merging changes discarding



Chapter 4. Properties of Modular Simulations 48

impossible choices, or by randomly integrating changes), an upper bound on execution

time of the simulation can be evaluated. There is a trade-off with accuracy if the system

is bounded in such a way, this can be used to get a quick overview of the model though.

The simulator could be used like this for real-time applications without any need for

absolute correctness, or where a trade-off can be made. An exemplary application would

be computer games.



Chapter 5

An Implementation of the

Integrated Module Simulator

5.1 Defining the Simulation in an Easy Way

An issue with whole cell models (and any model applicable to modularization) in general

is their huge complexity. Those models consist of a state containing several thousand

variables having tens or more processes acting on them. If the architecture is not care-

fully designed, dependencies will exist in the system, making the whole model rigid and

hard to adapt. As an example, imagine a system where each part can depend on ar-

bitrary other parts of the system (e.g. a process can depend on all states, but also on

other processes). In this system, the change of a single property in a state will make

updating all other processes necessary.

An often applied method in this case is the definition of well specified interfaces, i.e.

processes have input and output ports that accept and yield values according to a

specification. However, as was described above, processes in the concept of this thesis

only produce a change on the system and don’t have a state themselves. Thus they need

to be called from the simulator directly. The benefit is having less dependencies and a

simpler program structure.

Of further interest is compile time or static type checking, as this allows for model

verification (to a minor degree). This is valuable as it makes some of the unit testing

dispensable and gives the modeler instantaneous feedback on types used for various

properties.

This section tackles the issues mentioned by providing the base for a framework that is

modularized with only marginal dependencies between modules. First, the Karr model is

49



Chapter 5. Implementing the Simulator 50

examined. In short, it suffers from the above described complexity issues, and in addition

uses a verbose programming style plus Matlab-typical complex matrix accesses.

5.1.1 The Complexity of the Karr Whole Cell Model

The Karr model is written in Matlab, splitting up functionality into processes and states

using a simple object oriented approach (for an extensive explanation of object orien-

tation see [28]). Process implementations derive from a common Process superclass (or

a subclass of it called ReactionProcess) and states derive from a common State super-

class. Those classes themselves are written in a excessively complex way which makes

modification difficult. They inject basic functionality into their subclasses, but force all

subclasses to still implement some basic things like initialization of constants or copying

from and to state. The main reason the simulation seems hugely complex is lots of re-

dundancy (sometimes enforced by the way Matlab is designed, sometimes seemingly by

choice), lots of different ways to access the same elements, nested access into matrices

and Matlab structures and enormously long names. The latter isn’t necessarily bad,

however, the code looks very complicated and verbose like this.

Most of the functions are implemented on top of multi-dimensional matrices, which are

with high performance in Matlab. A state matrix usually has the dimension

nvars × ncompartments (5.1)

Where the number of compartments is six and the number of variables ranges from

a couple tens to about 700. A state can contain several of those matrices, describing

various aspects. An example would be enzymes in different states (as found in the

protein monomer and complex states). A logger object extends and stores this as a

matrix of size

nvars × ncompartments × ntimesteps (5.2)

This allows to have the whole simulation information stored in a central matrix. As one

can imagine this matrix is incredibly large, but useful for analysis of simulation output.

States now select variables they’re interested by denoting them in several predefined

fields (table 5.1 shows an overview of those fields) which are accessed by the simulator

object to copy state information into the processes and vice versa. States and their

properties can also be referenced directly in order to introduce changes on them. This

already provides several ways to access things.

The whole system gets more complex, as indices change during the copying from states to

processes (global to local), and parts of matrices often have to be extracted by reshaping



Chapter 5. Implementing the Simulator 51

stimuliWholeCellModelIDs Selects stimuli by their ID, a stimulus is a variable
coming from the external environment (currently not
used by any process).

substrateWholeCellModelIDs Selects substrates by their ID (metabolites, e.g. H2O,
H, MET, FOR).

enzymeWholeCellModelIDs Selects enzymes by their ID (e.g. MG 106 DIMER,
MG 172 MONOMER).

Table 5.1: Stimuli, substrate and enzyme variables to be copied from state

or selective access. There is also no notion of static typechecking and the correctness of

processes has to be validated by unit tests (variables within the simulation are usually

addressed by a string or int key, often both at the same time).

An important thing to note is that the simulation, even though everything is serial and

states could be (and are sometimes) modified directly, there is also lots of copying to

and from states and processes. There are also side effects which provide an additional

mechanism to introduce change on the system. All together - lots and lots of ways to do

things, lots of redundancy in the code, no compile (or any time) checking and verbose

description.

In the following model description, the system is changed and stripped so that users

only see the relevant parts of it and don’t have to think about the simulator logic at

all. In fact, simulator logic can easily be exchanged for the same model (letting people

work on the simulator independent of the modelers, allowing to simulate models with

different accuracy and more).

5.1.2 An Easier Model Description

In order to make collaborative work possible with people from different fields and dif-

ferent expertise in software like Matlab, it is important to have a very transparent and

simple model description. The model description developed here is loosely based on the

Karr model - making some drastic simplifications in the way users have to specify things.

It is important to see that the simulator simulating the model can easily be exchanged

with the language developed here (as in contrary to the Karr model for example, where

the simulator and model are tightly linked).

There are three main components: a state, various processes and a core model. Often,

modelers will only modify processes and the core model, as the state usually stays the

same over different simulations.



Chapter 5. Implementing the Simulator 52

5.1.2.1 State

The state or state vector contains all variables within the simulation. The variables can

be split up into states, however, states are purely for namespacing purposes and easier

access by the modeler. State variables are defined by a simple instruction:

variableName = field[optionalType](value, optionalDesc) optionalRestrictions

The variable name is extracted from the above statement via reflection at compile time.

If the value doesn’t already infer the type, the type of the field can be specified by

supplying it directly to the function. A description for the variable can be given within

the code, this is valuable for user interfaces. The optional restrictions include variable

bounds and other restrictions (e.g. ≥ 0).

An advantage of defining the variables that way is that the simulator can choose how (if

even) to split up the state variables. This allows for optimization strategies in distributed

systems as the simulator can determine (either stationary or whilst running) which

processes access which state variables and optimize for minimal message passing. It

can for example assign variables that are only used by certain processes directly to the

processes, so that no message has to be passed ever.

5.1.2.2 Processes

A process defines only an evolve state method that produces one or multiple changes

on the system (the reason for the notion of change is that it allows a process to specify

multiple changes). The evolve state method gets the state vector injected, as well as the

starting time and the step size. This functional approach allows processes to run multi-

ple times in parallel (e.g. for error estimation, error correction or simply in accordance

with the algorithms described earlier). An exemplary process definition thus looks like:

class MyProcess extends Process {

function evolve(state: StateVector, t: Double, dt: Double)

returns List[Change] {

...

}

}



Chapter 5. Implementing the Simulator 53

The process thus has complete access to all properties in the system, but as the simulator

automatically determines which variables are required by which processes, this still is

highly optimized.

5.1.2.3 Core Model

The core model defines everything that is model specific and is not stored in either the

states or processes. This includes the selection of processes participating in the sim-

ulation, special observables (the whole state information is available at the end of the

simulation, but observables are shortcuts that are immediately displayed to the modeler),

a method that calculates dependent variables within the state, some meta information

and it selects the simulation strategy to run the simulation. It’s outline looks like this:

class MyCoreModel extends CoreModel {

title = "My New Bio-Model"

description = "We try to show new things with it."

authors = "John Smith"

stateVector = new StateVector

processes = new Array(new MyProcess1, new MyProcess2, ...)

simulationStrategy = new SomeStrategy(MAX_TIME, DELTA_TIME,

MIN_DELTA_TIME, MAX_DELTA_TIME)

observables = List(stateVector.ATP, stateVector.H2O)

function calcDependencies(state: StateVector) { ... }

}

Meta Information Meta information is primarily used for display and interaction

within the user (either over the web interface, or some other means). Meta information

includes a title and description of the model, the authors and contributors. The intention

of meta information is to build a platform for collaboration at some point. Within the

platform, modelers can select different models and processes and use them as building

blocks to create new models or embed existing ones.

Constants Constants are defined within a Constants class in the model that can be

instantiated and accessed by all processes and states alike. It is important to see that





Chapter 5. Implementing the Simulator 55

Simulation Strategies The notion of a simulation strategy is introduced because

a simulator can run a model under various different strategies (comparable to Euler,

Runge-Kutta and similar when solving ODEs). Different algorithms are discussed in

chapter 3. Different strategies can focus on simulation speed, accuracy of output or

different other properties. A noteworthy point is that the model description is completely

independent of the simulation strategy, i.e. a single model can be simulated using

arbitrary simulation mechanisms. The advantage of such a system is that modelers are

independent of computer scientists who develop the underlying simulation strategies.

Logging Systems Logging of state variables can be chosen with various degrees of

detail, storage to disk, display in a user interface and more. In the model specification

so called observables are defined. Those observables give immediate feedback to the user

and are independent of the underlying logging strategy.

5.2 An Implementation in Scala

Scala is an advanced programming language developed at the EPF Lausanne [18].

Amongst others, it offers a very concise and minimal syntax, a primarily functional

paradigm (with all the object oriented concepts still available), a strong community and

integration (as it runs on the Java virtual machine) and an easy way to specify domain

specific languages.

It was chosen for the simulator implementation because of its widespread use in the

scientific community, the availability of various libraries (as all Java libraries can be used

without limitations), it’s minimalistic syntax, strong type checking and easy adoption

to domain specific languages.

The framework developed with this thesis can be found on Github under:

https://github.com/dominikbucher/moi-sim.

As the project is quite large, there were some libraries used to speed up development.

5.2.1 Used Libraries

The library used for message passing is the one developed by Typesafe under the name

Akka [29]. It is now part of the official Scala distribution but has only recently been

introduced. A message passing framework implements the message passing paradigm

https://github.com/dominikbucher/moi-sim


Chapter 5. Implementing the Simulator 56

(see e.g. [30] for more details about message passing). This paradigm describes a system

in which processes run on distributed computers, communicating only by messages.

However, in the Akka implementation those messages don’t have to be strings but can

be objects of arbitrary complexity. The message passing paradigm allows for easier

concurrency arguments and proofs, as all processes can be analyzed separately.

In the simulation, the passed messages are instructions to calculate some state change

given a state vector and a time, and the corresponding results:

/** Evolves system based on a process.evolve method. */

case class Evolve[T <: StormState[_]](state: T, t: Double,

dt: Double) extends Message

/** Results from a process.evolve method. */

case class Result[T <: StormState[_]](chgs: List[StormChange], t: Double,

dt: Double) extends Message

As sending the whole state can become an overhead, the concrete implementation only

sends the variable needed by the processes. This selection is done by registering all used

variables when a process runs and later on only communicating these variables.

A further noteworthy library is the Efficient Java Matrix Library (EJML) [31] which in

turn relies on some low-level libraries for math. The EJML allows matrix calculations

and the solving of optimization problems similar to Matlab [11] or Octave [32].

There are also some standard libraries in place to facilitate file input and output, plot-

ting, logging and some additional math operations. Those libraries are Colt [33], jOpti-

mizer [34] and s4gnuplot [35]. Colt is a set of open source libraries for high performance

scientific and technical computing in Java. jOptimizer is an open source library that ad-

dresses the solution of a minimization problem with equality and inequality constraints.

s4gnuplot finally provides a programmatic access to the gnuplot [36] program which is

used to plot observables.

The web interface is built on the Scalatra [37] library, a very light web framework.

It combines existing Java enterprise architecture with the brevity of Scala, making it

possible to build high-performance web sites and apis very quickly.

5.2.2 States

States are defined by extension from the State superclass. This state class has a self type

that defines a copy method (a self type in Scala defines what form subclasses need to



Chapter 5. Implementing the Simulator 57

have, often mentioned alongside it is the cake pattern, see also [38]). This copy method

must implement an algorithm that returns a copy of the state at any time. The variable

values don’t necessarily have to be copied, but their pointers have to point to new

objects. In Scala, the use of case classes facilitates this process, as case classes already

define their copy method. The state class then uses this copy method and provides the

additional copy logic to copy values on top of it via the dupl method.

The state also defines three maps:

• The fields map is a map between a field id and its value. This could alternatively

be implemented as an array, as field ids are incremental starting from 0.

• The field pointers map is a map between a field id and the field itself (as the field

defines additional properties like an id, name and description.

• The field names map maps ids to field names and is mostly used for user interfaces.

New fields are simply created via the following statement:

val ATP = field(ATP_INIT) <restrictions>

This will automatically create a field, give it a unique id within the state, extract the

name from the variable and apply the restrictions as specified.

A third responsibility of states is to collect all changes happening. This is done by

keeping change values for all fields in a map. The map can be reset via resetChanges

and collected by calling collectChanges. Usually it is reset at the beginning of a process’

evolve method, and collected in the end.

5.2.2.1 Fields

A field contains any value from the state vector. The advantage of defining everything

as a field is that this allows for automatic recording of changes and centralized definition

of administrative functions like update, merge and field flagging. In particular Scala

allows to define an update and an apply method that will automatically be called on an

object from the following two statements:

ATP() = 5.0 --> Calls update and updates the value of ATP

val x = ATP() + 2.0 --> Calls apply and returns the value of ATP



Chapter 5. Implementing the Simulator 58

This allows for a model syntax almost as if using the variables directly, however, in the

background all administrative tasks can be performed. Those tasks primariliy consist

of recording changes whenever update is called. Also, the fields class defines a merge

method that takes any change, integrates it into the field and checks for any violations.

5.2.2.2 A Mapping of Variables to Arrays

In order to improve performance, variables in the state vector are automatically mapped

to an array (or a map). For the user it looks as if he’d be manipulating variables directly,

in reality he’s manipulating an array of fields. Optimization primarily happens because

arrays allow for faster copying, faster field access and less overhead when sending as

messages.

This mapping happens by automatically assigning an id to every field. Further accesses

happen either via the field object (which doesn’t have to be reinstantiated or overwritten

at any time, as the underlying value is stored in the array) or via access by id on the

array directly.

5.2.3 Processes

The Process superclass very marginally defines a process outline. A process must be

given a name and it gets an id automatically assigned (again, processes and their re-

spective actors are stored in an array). The evolve method describes this process’ effect

on the state. In addition, the Process class defines some administrative logic, namely

clearing all changes of the state vector and collecting them again after evolve was exe-

cuted.

5.2.3.1 Gathering Changes

Change collection is rather easy as the state vector records all changes anyways. Pro-

cesses have to call the resetChanges method on the state before executing evolve, and

collectChanges afterwards.

5.2.4 Model

In addition to the information mentioned in 5.1.2.3, the Scala implementation defines

a method addProcess (or as a shortcut ++). This method expects a so called creator

function, which is a function without arguments that returns a new process. It also



Chapter 5. Implementing the Simulator 59

automatically assigns a unique id to the process. Both those steps ensure that the

simulator has complete control over process creation and can spawn as many as necessary.

The id gives a possibility to access all processes of the same type by id.

5.2.5 Strategies

Strategies only define the simulate method, which takes an input model and calculates

an output trajectory of the state vector. The output trajectory is stored in a TreeMap,

a sorted map, in this case by time (i.e. at every time point there is a vector describing

the state). The returned map thus has the following form:















t0 → [s0, s1, ..., sn]0

t1 → [s0, s1, ..., sn]1
...

tmaxTime → [s0, s1, ..., sn]maxTime















(5.3)

This map can be further analyzed and is also stored to disk. The analysis can be done

directly in Scala, as the map is returned from the simulator’s runSim method.

5.2.5.1 Integrating Changes

The implementation defines a trait ChangeHelper that helps integrating changes in dif-

ferent strategies. As many strategies face the same issues of how to integrate different

changes on different time scales, this trait defines this common functionality. The func-

tion intersect slices the different changes (see section 3.4 for an explanation what slicing

means) and gradually integrates all changes into the state vector. If a violation is de-

tected, the state is reset to the last non-violating state and the slice (beginning and end

time) together with the violating processes are returned.

If less functionality is required, the methods tryMerge and slices offer functionality to

merge a set of changes given a time interval or to slice up a set of changes into smaller

non-overlapping slices.

5.2.5.2 Detecting Violators

Violators are detected in the tryMerge method, where all changes are applied to the

state for the respective time interval (recall that changes are assumed linear on their

scale - comparable to many a numerical solving method). If at the end of the integration

process a violation is detected, all involved processes are returned.



Chapter 5. Implementing the Simulator 60

5.2.5.3 Stepping Back

A step back algorithm is implemented only for change integration, at the slice level. If

a strategy wants to provide functionality to step back further in time (e.g. to correct

errors, integrate more changes that weren’t available before etc.), it has to implement

that itself. It’s not overly complicated though, as the state vector can easily be copied

and stored in another map. Some of the strategies implemented for this thesis do this

and can serve as an example for further implementations.

5.2.6 The Simulator

The Simulator class finally wraps all the above components into an executable environ-

ment. It mainly defines the simulation and logging strategy and the model. For the Scala

implementation it adds an Akka actor system that handles all message passing within

the simulation. It defines the runSim method that runs the simulation asynchronously

and returns a future (a deferred result that can either be waited upon or lead to execu-

tion of some arbitrary code as soon as it’s available). The simulator also automatically

logs all data and plots the observables as specified in the model.

5.3 An Environment to Facilitate the Development of Whole

Cell Models

Inspired by the Karr model environment, this section describes the whole cell web in-

terface that allows to plug and play with whole cell models. The long time goal is to

have a platform for biological whole-cell models where people can plug their own models

in different host circuits and test for various effects when interacting with the host. As

for now, the web interface provides a user interface to choose and set parameters, run

simulations and display their results.

The web interface is implemented using Scalatra [37], a lightweight web framework. On

top of that it uses Atmosphere [39], a library that uses WebSockets [40] for server side

pushes to the browser. This allows the simulation results to be pushed to the browser

and to be updated there in real time.

As the whole simulator is implemented asynchronously, the server backend can spawn

simulators as needed and update the user interface whenever results are available. To

control the simulation from the browser, simple JSON messages can be sent to the server.

Commands are put into the type field and can take the following values (additional fields



Chapter 5. Implementing the Simulator 61

are given below the corresponding command):

"type" : "RequestSimInfo" --> Requests graph of specified simulation

"simName" : Name of simulation

"StartSimulation" --> Starts the simulation

"ResetSimulation" --> Resets the simulation

"UpdateParam" --> Updates a parameter in the simulation

"param" : Name of parameter

"value" : New value of parameter

"RegisterDataListener" --> Registers an observable

"dataPoint" : Name of observable

"UnRegisterDataListener" --> Unregisters an observable

"dataPoint" : Name of observable

The commands are then relayed to the simulator and invoke the respective actions there.

The user interface frontend is written in JavaScript, basically sending the above JSON

values on user events, receiving the responses from the server and updating the HTML

accordingly. Figure 5.2 shows a screenshot of the web interface.

Figure 5.2: A screen shot of the web interface for MOI-Sim



Chapter 6

Integrated Module Simulations

6.1 A Brine Tank Cascade System

As the simulator also allows to solve arbitrary systems, the first object of study is a

system of ordinary differential equations. The system is a standard system of study

called the brine tank cascade, see [41] for example. There are three tanks of different

sizes, where water flows from one to two and from two to three. The following equations

describe the flow of water in the system (where xi denotes the amount of water in tank

i):

x′1(t) =−
1

2
x1(t) (6.1)

x′2(t) =
1

2
x1(t)−

1

4
x2(t) (6.2)

x′3(t) =
1

4
x2(t)−

1

6
x3(t) (6.3)

As the system is quite simple, any strategy can be used (e.g. there are no violations that

can happen as there are no restriction, so the simulation strategy doesn’t even have to

take that into account). The system is starts with the following initial values:

x1(0) = 5 (6.4)

x2(0) = 0 (6.5)

x3(0) = 0 (6.6)

62



Chapter 6. Integrated Module Simulations 63

The exact solution is as follows:

x1(t) = 5 · e−t/2 (6.7)

x2(t) = −10 · e−t/2 + 10 · e−t/4 (6.8)

x3(t) =
15

2
· e−t/2 − 30 · e−t/4 +

45

2
· e−t/6 (6.9)

Figure 6.1 shows a plot of the functions calculated with the Module Integration Simulator

(MOI-Sim) developed in this thesis with a ∆t of 0.1. Figure 6.2 is the same system

simulated with Mathematica. The MOI-Sim version runs distributed on three processes.

Of course, for a small system like this that doesn’t make much sense and is just for

showing of capabilities of the simulation engine.

Figure 6.1: The exemplary brine tank cascade system

Figure 6.2: The exemplary brine tank cascade system simulated using Mathematica



Chapter 6. Integrated Module Simulations 64

6.1.1 Recycled Brine Tank Cascade

With a little change to the system the loop can be closed, so that tank 3 also fills up

tank 1:

x′1(t) =−
1

6
x1(t) +

1

6
x3(t) (6.10)

x′2(t) =−
1

6
x1(t)−

1

3
x2(t) (6.11)

x′3(t) =
1

3
x2(t)−

1

6
x3(t) (6.12)

Taking the same initial values (x1(0) = 5, x2(0) = x3(0) = 0), the exact solution

becomes:

x1(t) = 2 + 3 cos
t

6
· e−t/3 + sin

t

6
· e−t/3 (6.13)

x2(t) = 1− cos
t

6
· e−t/3 + 3 sin

t

6
· e−t/3 (6.14)

x3(t) = 2− cos
t

6
· e−t/3 − 2 sin

t

6
· e−t/3 (6.15)

Figure 6.3 shows a plot of the system generated with MOI-Sim.

Figure 6.3: The exemplary brine tank cascade system with recycling mechanism

The systems show the general functioning of MOI-Sim. The most important aspect is

the ability to plug in more processes, acting on the same state, without having to change

anything in the base model. A process using up water in tank 1 to drive something could

easily be added, without touching the original system.



Chapter 6. Integrated Module Simulations 65

6.2 A Whole Cell Model After Tobias Bollenbach

Described and used in the paper of Tobias Bollenbach et al. [42], the following model is

a very simple whole cell model, describing the host using only 4 variables. P describes

the amount of protein, C the total DNA, R the number of ribosomes and A the number

of energy molecules (e.g. ATP).

The dynamics of the four variables are defined with the following equations:

p′(t) = sp − g · p(t) (6.16)

c′(t) = sc − g · c(t) (6.17)

r′(t) = sr − g · r(t) (6.18)

a′(t) = sa − (g + kdeg) · a(t)− (ǫp · sp + ǫr · sr + ǫc · sc) (6.19)

Where g is the growth rate (leads to growth-dependent dilution) and the sx are produc-

tion terms, depending on various cell variables and parameters. For a detailed study

of the model, please consider the paper and supplementary documentation by Tobias

Bollenbach et al.

Figure 6.4 shows a plot of the Bollenbach model. The model can be used as a simple host

circuit to test models under a energy-managing host cell. The next section introduces

such a circuit and studies its embedding into the Bollenbach model.

Figure 6.4: The Bollenbach whole cell model





Chapter 6. Integrated Module Simulations 67

Figure 6.6 shows a plot of the resource processing model. It’s easy to see that the

external resource is processed depending on the availability of the processing protein

into the better resource Bw.

Figure 6.6: Plot of the resource processing model based on the Bollenbach model

The novelty is the extension of the system without any changes to the underlying pro-

cesses. Also, depending on different needs, the model can be run using different strate-

gies.

6.4 An Artificial Model of Comparable Complexity to the

Karr Model

As a re-implementation of the Karr model was out of the scope of this thesis, an au-

tomatically generated system of comparable complexity is considered for performance

measurements. The system consists of 28 processes and a state vector of 2’500 variables.

The 28 processes use the same computing time distribution (see Appendix A) as the

original Karr processes and modify similar number of variables each (400 variables).

Table 6.1 shows the execution time of a 60 second simulation using the different strate-

gies. As is visible, distributed strategies can reduce the simulation time near towards

the optimum (in this simulation, the longest individual process time is about 300 ms,

all processes sequential take about 1 second to calculate, thus an optimal computation

time would be 20 seconds).



Chapter 6. Integrated Module Simulations 68

Strategy Execution Time (seconds)
Karr Strategy 60.038
Smash Strategy 61.502
Synchronization Points Strategy 21.674
Independent Time Scales Strategy 81.832
Distributed with Time Step Adaption 29.838

Table 6.1: Execution times of different strategies

The independent time scale strategy is sequential, but also does some recalculations

sometimes (in order to let processes keep up with each other) and thus is the slowest.

The computational overhead for the distributed time step adaption strategy makes the

synchronization points strategy preferable. However, the latter can’t handle different

time scales.

The two simple strategies (Karr and smash) perform about the same, but aren’t able

to integrate complex changes. In a system with processes with equal time steps it’s thus

recommended to use the synchronization points strategy, if independent time scales are

needed, the distributed version of the independent time scales strategy should be applied.

Concluding, the strategies allow to give a performance boost up to the maximum induced

by the model. Further optimization would be on a model basis, trying to make process

execution times about equal.



Chapter 7

Conclusions and Future Works

7.1 Conclusions

Whole cell modeling is a trend that manages to fascinate people from different fields.

The framework developed in this thesis provides an alternative and open source way to

model whole cells and complex systems in general. It focuses on decoupling of model and

simulator, distributed and parallel simulation and an easy model description language

(whilst still having the whole Java ecosystem at disposal). It successfully implements

these points whilst also managing to improve on simulation execution speed.

Further, some theoretical founding is given for the various choices in the Karr simulator

as well as the developed simulator. As the whole field is tightly linked with previous

research done on numerical methods, analogies are drawn and ideas adapted. The field

of whole cell models is still young, for which reason a lot of aspects had to be left out

for investigation at a later stage.

The Module Integration Simulator (MOI-Sim) platform is a first step towards modular-

ized plug-and-play simulations. Feedback and interest have been great, and it is now

used for parts of the modeling for the iGEM competition by the University of Edinburgh

team. There are plans to continue the research in Edinburgh, as well as via the Flowers

Consortium, a union of biology modelers from various universities in Great Britain.

7.2 Future Works

On the theoretical side, future work consists of building a stronger formalism to prove

properties of modularized systems. Alongside this, more theory can be adapted from

previous research in numerical methods (like error estimation for time step determination

69



Chapter 7. Conclusions and Future Works 70

and global error bounds, sensitivity analysis of black-box processes, system sensitivity

analysis, efficiency arguments and more). Another interesting idea is the automated

clustering of arbitrary systems, as outlined in [25], in this case especially by compiling

all processes into a monolithic block and re-modularizing it in mathematically optimal

ways. The idea of processes guessing the effects of others can be studied, which might

be interesting for real-time systems like computer games or talk robots. The strategies

developed in this thesis are one possibility and can be optimized and changed.

The implementation can benefit from adapters for various other simulation languages,

e.g. Matlab or the Kappa language developed at the University of Edinburgh. This

allows to integrate existing models directly into MOI-Sim, without having to change

much. Distributed simulation strategies with decentralized state and optimized state

sharing (i.e. only sharing parts of the state which are needed by a process) can be

implemented for simulation performance. Clustered simulations, where the models run

on a whole cluster communicating via a network might make sense for systems that have

large individual process simulation times.

The Module Integration Simulator platform can be extended further, to provide a repos-

itory of whole cell models that can be used to simulate models under various host condi-

tions. This would lead to a platform similar to BioBricks, where people select functions

they want to see included in a cell without having to develop their own synthetic circuits,

and then add their own functionality.

There is a lot of work to be done by specifying different host models of various com-

plexities. These models can focus on various aspects of cells and provide integration for

various processes.



Appendix A

Appendix

A.1 Time Spent on Different Modules

This appendix gives statistics about a timing analysis made using the Matlab profiler.

It was made letting the simulator run for the first 20 second simulation time. Thus it

makes no claim at being viable for overall timing statistics. The purpose is to get an

approximate view how the time distribution in a whole cell model looks like. Table A.1

shows the distribution.

Process Name Execution Time (%)
Replication 31.4%
tRNA Aminoacylation 22.8 %
Transcription 10.7 %
Translation 4.8%
Metabolism 3.7%
RNA Decay 3.7%
RNA Supercoiling 2.7%
RNA Repair 2.1%
RNA Damage 1.7%
Chromosome Condensation 1.5%
Replication Initiation 1.4%
Protein Folding 1.1%
Protein Processing I 1.0%
Rest < 1.0%

Table A.1: Execution time distribution in the Karr model

71



Appendix A. Computation Time Distribution in the Karr Model 72

A.2 Hill-Type Consumption of Resources

The requirements functions use an infinite supply of metabolites. As the reactions can

be modeled as Hill type functions ([43]), they reduce in the following way:

dX

dt
=
−kAX

C +X

This will give either a linear formula or a saturation at −kA for large X:

dX

dt
= −kA X →∞ (saturation)

dX

dt
=
−kAX

C
X → 0 (linear regime)

The former is used to calculate resource requirements, the latter to evolve the state.

This is not the exact way resource allocation is handled in the Karr model, but just a

reasonable interpretation. In the Karr model, different formulas are used for resource

requirements and consumption (they might be and are usually related, but not strictly

mathematical). The formulas can implement any imaginable method.

A.3 Step Size Adaption for the Euler Method

This section walks through a possible step size adaption method for an ODE solved with

the Euler method (for detailed reference see [44] and [14]). Let’s start from the initial

value problem:

x′(t) = f(t, x(t)), x(t0) = x0 (A.1)

The solution at t+∆t is calculated two times: Once with ∆t and once with ∆t/2 applied

two consecutive times. This leads to the following two solutions:

x(t+∆t)1 = x0 +∆t · f(t0, x0) + c ·∆t2 (A.2)

x∆t/2 = x(t+
∆t

2
)2 = x0 +

∆t

2
· f(t0, x0) (A.3)

x(t+∆t)2 = x∆t/2 +
∆t

2
· f(t0 +

∆t

2
, x∆t/2) +

1

2
c ·∆t2 (A.4)

Where c is a constant depending on the functions to be integrated and would change

proportional to x(3)(t), which is neglected here though. The next step size ∆t can now



Appendix A. Computation Time Distribution in the Karr Model 73

be determined via:

d = x(t+∆t)2 − x(t+∆t)1 (A.5)

hi+1 = 0.9 · hi ·
ǫ

|d|
(A.6)

This ensures the local error will be bounded by ǫ. 0.9 is a safety constant to make sure

the next step is successful.



Bibliography

[1] Jonathan R Karr, Jayodita C Sanghvi, Derek N Macklin, Miriam V Gutschow,

Jared M Jacobs, Benjamin Bolival, Nacyra Assad-Garcia, John I Glass, and

Markus W Covert. A whole-cell computational model predicts phenotype from

genotype. Cell, 150(2):389–401, 2012.

[2] N.A. Campbell. Biology Exploring Life. Pearson Prentice Hall, 2006. ISBN

9780132508827.

[3] H. Lodish. Molecular Cell Biology. W. H. Freeman, 2008. ISBN 9780716776017.

[4] A. Maton. Cells: Building Blocks of Life. Prentice Hall science. Pearson Prentice

Hall, 1997. ISBN 9780134234762.

[5] Oliver Purcell, Bonny Jain, Jonathan R Karr, Markus W Covert, and Timothy K

Lu. Towards a whole-cell modeling approach for synthetic biology. Chaos: An

Interdisciplinary Journal of Nonlinear Science, 23(2):025112–025112, 2013.

[6] AG Wilson, AC White, and RA Mueller. Role of predictive metabolism and toxicity

modeling in drug discovery–a summary of some recent advancements. Current

opinion in drug discovery & development, 6(1):123, 2003.

[7] Bernard Zeigler. Object-oriented simulation with hierarchical, modular models. San

Diego, CA (USA); Academic Press Inc., 1990.

[8] Bernard P Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory of modeling and

simulation: integrating discrete event and continuous complex dynamic systems.

Academic press, 2000.

[9] MathWorks Simulink. Simulink - simulation and model-based design, 2013.

URL http://www.mathworks.co.uk/products/simulink/. [Online; accessed 28-

August-2013].

[10] Mark Moir and Nir Shavit. Concurrent data structures. Handbook of Data Struc-

tures and Applications, pages 47–14, 2007.

74

http://www.mathworks.co.uk/products/simulink/


Bibliography 75

[11] MathWorks. Matlab - the language of technical computing, 2013. URL http:

//www.mathworks.co.uk/products/matlab/. [Online; accessed 27-August-2013].

[12] Jonathan R Karr, Jayodita C Sanghvi, Derek N Macklin, Abhishek Arora, and

Markus W Covert. Wholecellkb: model organism databases for comprehensive

whole-cell models. Nucleic acids research, 41(D1):D787–D792, 2013.

[13] Karr et al. Wholecell xml simulation configuration file generator, 2013. URL

http://wholecell.stanford.edu/simulation/runSimulations.php. [Online;

accessed 28-August-2013].

[14] William H Press, Saul A Teukolsky, William T Vettering, and Brian P Flannery.

Numerical Recipes in C-2’nd Edition. Cambridge Univ. Press. Cambridge, 1992.

[15] Guido Van Rossum et al. Python programming language. In USENIX Annual

Technical Conference, 2007.

[16] Django. The web framework for perfectionists with deadlines, 2013. URL https:

//www.djangoproject.com/. [Online; accessed 28-August-2013].

[17] MySql. The world’s most popular open source database, 2013. URL http://www.

mysql.com/. [Online; accessed 28-August-2013].

[18] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,

Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias

Zenger. An overview of the scala programming language. Technical report, Citeseer,

2004.

[19] Json. Javascript object notation, 2013. URL http://www.json.org/. [Online;

accessed 28-August-2013].

[20] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and François

Yergeau. Extensible markup language (xml). World Wide Web Journal, 2(4):27–

66, 1997.

[21] Karr et al. Wholecell visualization suite, 2013. URL http://wholecellviz.

stanford.edu/. [Online; accessed 28-August-2013].

[22] Thomas Rauber and Gudula Rünger. Parallel implementations of iterated runge-

kutta methods. International Journal of High Performance Computing Applica-

tions, 10(1):62–90, 1996.

[23] George D Byrne and Alan C Hindmarsh. Pvode, an ode solver for parallel com-

puters. International Journal of High Performance Computing Applications, 13(4):

354–365, 1999.

http://www.mathworks.co.uk/products/matlab/
http://www.mathworks.co.uk/products/matlab/
http://wholecell.stanford.edu/simulation/runSimulations.php
https://www.djangoproject.com/
https://www.djangoproject.com/
http://www.mysql.com/
http://www.mysql.com/
http://www.json.org/
http://wholecellviz.stanford.edu/
http://wholecellviz.stanford.edu/


Bibliography 76

[24] Julio Saez-Rodriguez, Stefan Gayer, Martin Ginkel, and Ernst Dieter Gilles. Auto-

matic decomposition of kinetic models of signaling networks minimizing the retroac-

tivity among modules. Bioinformatics, 24(16):i213–i219, 2008.

[25] Dominik Bucher, Ilias Garnier, Ricardo Honorato, and Vincent Danos. Decompo-

sition of strongly coupled systems. Young Researchers Workshop on Concurrency

Theory, 2013.

[26] Andrea Y Weiße. Global Sensitivity Analysis of Ordinary Differential Equations.

PhD thesis, FU Berlin, 2009.

[27] Andrea Saltelli, Karen Chan, E Marian Scott, et al. Sensitivity analysis, volume

134. Wiley New York, 2000.

[28] James R Rumbaugh, Michael R Blaha, William Lorensen, Frederick Eddy, and

William Premerlani. Object-oriented modeling and design. 1990.

[29] Akka. Message passing for the jvm, 2013. URL http://akka.io/. [Online; accessed

28-August-2013].

[30] William D Gropp, Ewing L Lusk, and Anthony Skjellum. Using MPI: portable

parallel programming with the message-passing interface, volume 1. the MIT Press,

1999.

[31] EJML. Efficient java matrix library, 2013. URL https://code.google.com/p/

efficient-java-matrix-library/. [Online; accessed 28-August-2013].

[32] Gnu Octave. Open source numerical computation, 2013. URL http://www.gnu.

org/software/octave/. [Online; accessed 28-August-2013].

[33] Colt. Open source libraries for high performance scientific and technical computing

in java, 2013. URL http://acs.lbl.gov/software/colt/. [Online; accessed 28-

August-2013].

[34] jOptimizer. Solving minimization problems with equality and inequality constraints,

2013. URL http://www.joptimizer.com/. [Online; accessed 28-August-2013].

[35] s4gnuplot. Small scala wrapper for gnuplot, 2013. URL https://github.com/

Rogach/s4gnuplot. [Online; accessed 28-August-2013].

[36] Gnuplot. Command-line driven graphing utility, 2013. URL http://www.gnuplot.

info/. [Online; accessed 28-August-2013].

[37] Scalatra. A tiny, sinatra-like web framework for scala, 2013. URL http://www.

scalatra.org/. [Online; accessed 27-August-2013].

http://akka.io/
https://code.google.com/p/efficient-java-matrix-library/
https://code.google.com/p/efficient-java-matrix-library/
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://acs.lbl.gov/software/colt/
http://www.joptimizer.com/
https://github.com/Rogach/s4gnuplot
https://github.com/Rogach/s4gnuplot
http://www.gnuplot.info/
http://www.gnuplot.info/
http://www.scalatra.org/
http://www.scalatra.org/


Bibliography 77

[38] Dean Wampler and Alex Payne. Programming Scala: Scalability = Functional

Programming + Objects. O’Reilly, 2009.

[39] Atmosphere. Realtime client server framework for the jvm, supporting web-

sockets and cross-browser fallbacks support, 2013. URL https://github.com/

Atmosphere/atmosphere. [Online; accessed 27-August-2013].

[40] Ian Fette and Alexey Melnikov. The websocket protocol. IETF Memo, 2011.

[41] Grant B. Gustafson. Systems of dierential equations, 2013. URL http://www.math.

utah.edu/~gustafso/2250systems-de.pdf. [Online; accessed 28-August-2013].

[42] Tobias Bollenbach, Selwyn Quan, Remy Chait, and Roy Kishony. Nonoptimal

microbial response to antibiotics underlies suppressive drug interactions. Cell, 139

(4):707–718, 2009.

[43] Archibald Vivian Hill. The possible effects of the aggregation of the molecules

of hmoglobin on its dissociation curves. Proceedings of the physiological society,

page iv, 1910.

[44] Walter Gautschi. Numerical analysis. Springer, 2012.

https://github.com/Atmosphere/atmosphere
https://github.com/Atmosphere/atmosphere
http://www.math.utah.edu/~gustafso/2250systems-de.pdf
http://www.math.utah.edu/~gustafso/2250systems-de.pdf

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 An Introduction to Whole Cell Models
	1.1 An Informal Definition of a Whole Cell Model

	2 A Detailed Description of the Karr Model
	2.1 A Peek at the Karr Model
	2.2 The Simulation
	2.2.1 Loading Initial Parameters and Values
	2.2.2 States
	2.2.3 Processes
	2.2.4 Interaction Between States and Processes
	2.2.5 A Comparison with Numerical Methods

	2.3 The Knowledge Base
	2.4 Analysis and Visualization
	2.5 Strengths and Weaknesses of the Model

	3 A Formal Description of Modular Simulations
	3.1 Existing Modular and Distributed Models
	3.2 Formalizing the Karr Model
	3.2.1 The Building Blocks of the Karr Model
	3.2.2 Connecting the Blocks

	3.3 A Ubiquitous Description of Modular Models
	3.4 Different Implementations of Split(.) and Merge(.) and General Algorithms to Intersect Changes
	3.4.1 Pre-Allocation Strategies
	3.4.2 Post-Allocation Strategies
	3.4.2.1 Smash Strategy
	3.4.2.2 Change Merging Strategy
	3.4.2.3 Synchronization Points
	3.4.2.4 Independent Time Scales
	3.4.2.5 Distributed Strategies

	3.4.3 An Informal Comparison


	4 Properties of Modular Simulations
	4.1 Correctness: Implications of Karr's Split(.) and Merge(.)
	4.1.1 Why Metabolites Need to be Split
	4.1.2 Effects of Dividing State
	4.1.2.1 Consumption Errors in a Simple System
	4.1.2.2 Tackling the Problem of Under-Consumption
	4.1.2.3 Generalizing Consumption Errors on Arbitrary Functions


	4.2 Domain Applicability of Modularized Simulations
	4.2.1 Non-Interacting Systems
	4.2.2 Heavy-Load Processes

	4.3 Effective Dynamics / Time Step Adaption
	4.3.1 Single Process Time Step Adaption
	4.3.2 Multiple Process Time Step Adaption
	4.3.3 Violations

	4.4 Sensitivity
	4.5 Efficiency

	5 An Implementation of the Integrated Module Simulator
	5.1 Defining the Simulation in an Easy Way
	5.1.1 The Complexity of the Karr Whole Cell Model
	5.1.2 An Easier Model Description
	5.1.2.1 State
	5.1.2.2 Processes
	5.1.2.3 Core Model
	Meta Information
	Constants
	Functions
	Observables

	5.1.2.4 Simulator
	Simulation Strategies
	Logging Systems



	5.2 An Implementation in Scala
	5.2.1 Used Libraries
	5.2.2 States
	5.2.2.1 Fields
	5.2.2.2 A Mapping of Variables to Arrays

	5.2.3 Processes
	5.2.3.1 Gathering Changes

	5.2.4 Model
	5.2.5 Strategies
	5.2.5.1 Integrating Changes
	5.2.5.2 Detecting Violators
	5.2.5.3 Stepping Back

	5.2.6 The Simulator

	5.3 An Environment to Facilitate the Development of Whole Cell Models

	6 Integrated Module Simulations
	6.1 A Brine Tank Cascade System
	6.1.1 Recycled Brine Tank Cascade

	6.2 A Whole Cell Model After Tobias Bollenbach
	6.3 A Resource Processing Model Based on the Bollenbach Model
	6.4 An Artificial Model of Comparable Complexity to the Karr Model

	7 Conclusions and Future Works
	7.1 Conclusions
	7.2 Future Works

	A Appendix
	A.1 Time Spent on Different Modules
	A.2 Hill-Type Consumption of Resources
	A.3 Step Size Adaption for the Euler Method

	Bibliography

