

 What's New?

Information and Entertainment
Application for Android and iPhone

Semester Thesis

Dominik Bucher, D-ITET

dobucher@ee.ethz.ch

January 2012

Distributed Computing Group, ETH Zurich, 8092 Zurich

Supervisors Samuel Welten and Mihai Calin

Professor Dr. Roger Wattenhofer

Abstract
In this thesis a script language is developed that allows processing of arbitrary HTML documents. The

processing is done to extract important elements from the documents. These elements include

headlines, paragraphs and images. In the process, advertisements, specific design elements and

other unwanted parts are discarded. This allows extraction of specific content from any regular web

site. The script language is finally used within a news application that crawls news sites, extracts

important parts of them and displays the articles. For the whole process no content from content

providers has to be stored on the server of the application developer. The only things that are stored

on the server are links pointing to the respective html pages and files on about how to process this

html. This can also be beneficial for copyright issues as the whole content extraction is done on the

end-user device.

 1

Contents

List of Figures ... 2

List of Tables .. 2

List of Listings .. 2

1 Introduction ... 3

2 Problem Definition .. 4

3 Requirements for an Extraction Instruction Set .. 5

4 Related Work ... 7

4.1 HTML Sanitizing / Parsing .. 7

4.2 HTML Content Processing ... 7

4.3 Content aggregation .. 7

4.4 News Applications ... 8

5 HTML Processing Instruction Definition .. 9

5.1 The Story File ... 9

5.2 The Instruction Files .. 10

5.3 Nodes in the Instruction Files .. 11

6 A Proof-of-Concept Implementation ... 14

6.1 Implementation of the Extraction Language ... 14

6.2 The Surrounding Application: Requirements .. 15

6.3 The Surrounding Application: Implementation ... 16

6.4 The Server Part .. 18

7 Conclusions .. 18

8 Acknowledgements ... 19

9 References ... 20

10 Appendix ... i

10.1 HTMLExtractor.java .. i

 2

List of Figures
Figure 1: Application Structure ... 4

Figure 2: New York Times Article, www.nytimes.com .. 5

Figure 3: Google Currents Application, http://www.google.com/producer/currents............................ 8

Figure 4: Application Layout .. 16

Figure 5: Application Flow ... 17

Figure 6: Application Screenshots ... 18

List of Tables
Table 1: Extraction Types .. 6

Table 2: Content Fetch Information .. 6

Table 3: Extraction File Binding ... 6

Table 4: Story File Definition ... 9

Table 5: Basic Nodes in Instruction Set ... 12

Table 6: Flow Control Nodes in Instruction Set ... 12

Table 7: Extraction Nodes in Instruction Set ... 13

Table 8: Element Nodes in Instruction Set .. 13

List of Listings
Listing 1: Example Story File .. 10

Listing 2: Example Ruleset File .. 10

Listing 3: Code Snippet of extractElement() .. 15

Listing 4: Code Snippet of extractString() .. 15

file:///D:/Users/Dominik/Documents/Dropbox/Semesterarbeit%20WhatsNew/Documents/Paper%20Semesterarbeit.docx%23_Toc314511748
file:///D:/Users/Dominik/Documents/Dropbox/Semesterarbeit%20WhatsNew/Documents/Paper%20Semesterarbeit.docx%23_Toc314511749
file:///D:/Users/Dominik/Documents/Dropbox/Semesterarbeit%20WhatsNew/Documents/Paper%20Semesterarbeit.docx%23_Toc314511750
file:///D:/Users/Dominik/Documents/Dropbox/Semesterarbeit%20WhatsNew/Documents/Paper%20Semesterarbeit.docx%23_Toc314511751

 3

1 Introduction
Some years ago we used to read our daily news by having a look at the newspaper every morning.

Most of us haven't changed this habit, but the newspapers themselves nowadays often look quite

different. With the trend that everyone carries a computer wherever he goes, with those devices

getting increasingly powerful and with them being connected to the internet all the time, more and

more news are being distributed over this new channel.

Suppose you want to read news on your mobile device. You'll have several possibilities how to do

this:

 You could visit the web site of the news provider, preferably the mobile version. Often they

are rather clumsy and filled with advertisements though, and even if they are not, the

content displayed will always be coming from the one and only provider who created the

web site.

 So, to improve your user experience, you'd probably install a news application. Again, news

applications are often provided by the news publishers themselves. These applications have

the disadvantage of restricting the articles displayed to those of one provider.

 In search for a general news reader application, you will stumble upon RSS readers, which

are probably the most widely used readers nowadays. They will display an excerpt of the full

article and lead to the web page of the provider if you are interested in reading more.

 As this isn't really satisfying, there is a recent trend for applications that try to make

agreements with news providers. The content providers allow them to publish their articles,

often providing a nice and clean way to show content. But this is a very recent trend and it

looks like it leads to content where you pay a fee to access it.

Whilst the latest solution seems agreeable from a customer point of view, taken that the customer is

willingly to pay for the news he wants, it requires the application developer to have many

agreements with the content providers. Also, the data either has to be stored on the application

server or the content provider has to provide an interface where to get the data. For many

applications this is a huge overhead, especially because to become a useful application one has to

have many agreements with content providers. Also, agreements may not always be found.

From a developer point of view it would be nice to crawl all the content that users are interested in,

not requiring agreements with each of the providers. Since it's usually not allowed to copy content to

one's own server and distribute it from there, this process of fetching and rearranging content would

have to be done on the customer device.

The news application in this thesis tries to solve this problem by only providing a file that describes

where the important parts of a webpage are. Like this, a user will download the normal web site of

the news provider but only see the content he's interested in, for the rest will automatically be

discarded. For the application developer this has the advantage that he doesn't have to store any

data from other companies on his servers, nor does he use it in any other way than as input to a

processing function on the end-users device.

This approach gives the user all the benefits of a general reader and the developer complete freedom

which sources to process and include in his application. Figure 1 gives an overview of the application

structure.

 4

Figure 1: Application Structure

2 Problem Definition
Web sites are often clustered with a lot of things besides relevant content. Have a look at Figure 2,

there are a lot of advertisements, links and gadgets you usually don't need nor want to see. The

actual article consists of different parts that are spread around, between and in the middle of all

these other things.

The goal is to extract the relevant parts of a web site. These parts will be put into classes such as title,

subtitles, images, paragraphs or videos. The displaying of this data can then easily be achieved and

completely customized, thus allowing for very user friendly designs and a high user experience.

Many on-the-fly processors are very generalized in order to be able to process as many different

content sources as possible. The approach chosen for this thesis is a different one. The processing

instructions are bound to a certain web site. Most content providers build their sites using a content

framework which will always produce output of the same structure. Thus a processing instruction set

can be used for all the content of a specific provider. Compared to a generalized processor this allows

to take care of specialties in the content provider's web sites, making it possible to easily process all

the content for which an instruction set exists.

Further, as the instruction sets are very specific, it would be nice if the community could edit and

provide these files, so everyone who whishes a new content to be available could write an extraction

file and include it in the application.

This introduces some requirements for the extraction instruction sets.

 5

Figure 2: New York Times Article, www.nytimes.com

3 Requirements for an Extraction Instruction Set
The instruction sets define extraction and processing rules for the web sites fetched. Since a new

extraction rule set is needed for each content provider, the sets have to be simple. The rule sets

must be readable and producible by anyone. It's a requirement that in the end every user has to be

able to create and submit his own rule sets.

In order to be able to handle all content from a specific provider, the instruction sets have to be

generalized to a certain degree, i.e. they have to take into account different document structures or

at least give the possibility to do so. Basically, an instruction set should reflect how a content

publisher has his web pages created, thus being applicable to all sort of content that is published

using the same generator.

 6

As a proof of concept, the content processor will have to cope with three different types of content

in this thesis:

 News Article: Article with mixed content of images, titles, paragraphs and embedded videos

(articles from New York Times, CNN, Gizmodo, Techcrunch, The Sartorialist)

 Image Article: Single-image article (articles from Flickr)

 Video Article: Single-video article (articles from YouTube, Vimeo)

The latter two can be reduced to the first type for a lot of the processing, but they will need some

special processing rules to allow for embedded video display. As for the video display, it turns out

either the embed links from the respective providers have to be used or the user has to be

forwarded to the native application or the browser. To simplify this, the extraction instructions have

to be able to provide custom built elements where the creator can specify the final display of the

data.

The extraction instructions sent to the mobile device should contain information about how to

extract the following fields from an arbitrary web site.

Title Title of the article

Date and Time Date and time when the article has been created

Short Description Short description to be displayed in an article overview

Thumbnail A thumbnail previewing the article

Content Content of the categories subtitle, text, video, music, image
Table 1: Extraction Types

The content will be the biggest and most difficult part to specify, since the extraction has to be

generalized for any type of content the content extractor will encounter.

Apart from the content extraction instructions, the protocol must send along the information that is

needed to fetch the content. These information fields are:

URL Link where the article can be found

Date and Time Date and time when the article has been created, used to sort content

Publisher The content publisher, such as New York Times, CNN, ...
Table 2: Content Fetch Information

Since the above two parts of the protocol are decoupled (extraction instructions are decoupled from

the information on where to fetch the content), the protocol also has to specify which extraction

instruction file to use for a certain type of content:

Content ID The content publisher's ID, such as nytimes, cnn, ...

Extraction File Version The version of the extraction file, this is used for easy updating and in case

a publisher uses completely different content creation mechanisms for

different articles
Table 3: Extraction File Binding

 7

4 Related Work
The thesis mainly treats HTML processing and news applications. HTML processing can be split in two

different parts. First, html often has to be sanitized to be available in a clean form that can be further

processed. The processing then is done by using xml techniques or CSS selectors.

Further, different content extraction approaches as they appeared in research and some applications

as they are available today will be presented along with how they solve the content aggregation

problem.

4.1 HTML Sanitizing / Parsing
During the process of sanitizing html, the document is cleaned from unknown tags and bad

formatting. During the process of parsing, the input document (in the form of a string) is used to

create the document object model (DOM). There exist a lot of different sanitizing and parsing

methods, every browser has to implement a method and many libraries are available for different

languages. A standardization of html parsing can be found at (WHATWG, Apple Computer, Inc.,

Mozilla Foundation and Opera Software ASA, 2004-2012) under the section Parsing HTML

documents.

Libraries looked at for this thesis are JSoup (Hedley, 2009-2011) and TagSoup (Cowan, 2004-2011).

They both provide HTML sanitizing, JSoup additionally provides html parsing according to the

WHATWG specification described above (creating a DOM tree). Since JSoup provides more

functionality than TagSoup and behaves according to the WHATWG standard, it would have been

chosen for the proof-of-concept application of this thesis, if not for the highly optimized browser

engines. All the browsers have to do sanitizing and parsing themselves, are usually kept up to date

and provide highly optimized sanitizing and parsing. Because of that they offer a nice and convenient

alternative to do the processing and therefore were chosen over libraries such as JSoup for this

thesis.

4.2 HTML Content Processing
Html content is usually processed within the browser using JavaScript (Mozilla Developer Network,

1995-2011). To make this process easier various libraries such as jQuery (The jQuery Project, 2010)

exist. Other ways include the standardized XML path language XPath (Anders Berglund, 2010), for

which libraries such as JSoup (Hedley, 2009-2011) exist. The browsers offer a well documented and

up-to-date way to process html files using JavaScript, but one might argue that since JavaScript is a

scripting language run within a browser it will not offer the same speed as an XPath implementation.

4.3 Content aggregation
A lot of research on content extraction and aggregation has been done when the first PDAs appeared

on the market. These devices only had minimal capabilities to display web pages, thus the need for

content extraction was great. In (Suhit Gupta G. K., 2003), the extraction is done using filters that

hide or remove certain elements of html DOM trees. Whilst this approach is effective, it’s more of a

content reformatting than an extraction, as operations are performed on the DOM, but the same

DOM is displayed to the user in the end. This has the advantage that unknown elements might still

be displayed to the user, but this can just as fast turn into a disadvantage. The framework was

further refined in more recent publications (Suhit Gupta H. B., 2006).

 8

 (A. F. R. Rahman, 2001), the first work about single document based content extraction, describes

fundamental properties a content extraction system should comply with and proposes an approach

that uses structural analysis, contextual analysis and summarization. The approach taken there is to

split up the html into pieces and use contextual analysis to determine the importance of the different

pieces. Via summarization a short summary of each piece is created that is used to create a link to

the respective section (again, presenting small chunks of data was important for early PDAs).

More recent research includes (Gottron, 2008) which gives a complete overview and comparison of

different concepts used up to 2008. (Fabio Vitali, 2004) describes a rule-based structural analysis of

web pages with some similarities to the rule-based approach in this thesis. The rule set was part of

IsaWiki and mainly thought to identify parts of websites that would be interesting for a user to edit.

It can be used for content extraction in some way though.

An interesting commercial use of html extraction is the Opera Mini (Opera Software, 2011) browser,

which sends website requests to Opera servers which will only relay important stuff to the users to

decrease overhead. It uses the Extensible Rendering Architecture, which usually does only minor

changes though (apart from resizing images, which is its main purpose).

Figure 3: Google Currents Application, http://www.google.com/producer/currents

4.4 News Applications
As for the news applications being developed in this field, most if not all of them (or at least the

popular ones) are closed source. Some tests on the Pulse news application (Alphonso Labs, Pulse,

2011) in the scope of this thesis revealed it to be calling public RSS feeds and displaying their content.

The testing was performed by routing web traffic of an android device over a wireshark-sniffed

interface and looking at the files sent and requested. Other news applications like Taptu (Taptu,

2011) and Google Currents (Google Inc., 2011), shown as example in Figure 3, give strong hints that

 9

they function the same way by only providing content from publically available feeds and blogs.

Google Currents, only recently announced, probably intends to incorporate paid subscriptions (the

price buttons are already there), but so far providers that would fall into this category only display

their regular RSS feeds.

5 HTML Processing Instruction Definition
The following section will outline the scripting language developed in this thesis. It follows the

requirements outlined in the problem definition.

For any data passed between the application server and the device xml will be used. This allows fast

and easy parsing on the device as a lot of optimized xml parsers are available for many platforms. To

reduce overhead and make the system extensible, the whole extraction process is split up into three

tasks:

1. A story file is requested from the application server. This file is of a simple structure mostly

consisting of the URLs where to fetch the html sites.

2. Depending on the URLs in the story file, html extraction instruction files can be requested on

demand and stored locally for later use.

3. Using these extraction instructions, the content is retrieved and made ready for

presentation.

5.1 The Story File
The story file describes all the stories the user can flip through once loaded. This is a file that is either

requested by the application on startup or as soon as all previously requested stories have been

read. Basically, it's an URL collection with a link to an extraction file for each URL. The stories in the

story file have the following fields:

Content ID ID that uniquely describes the content provider, is used to choose

the right extraction rule set (stored in variable $$contentID).

Any string

Extraction File

Version

The Version of the extraction file, this makes it possible to have

different versions for different articles. Updating an instruction

rule set gets easy, simply increase the version number and supply

a new instruction set (stored in $$extrVersion).

Any string

Publishing

Date

The date the story was crawled by the server (other values

possible, e.g. the publishing date). This field is used on the server

to sort the stories and on the client to be displayed if there is no

other date on the web site that can be extracted (stored in

$$pubDate).

string of form
EEE, dd MMM
yyyy
HH:mm:ss
ZZZZ,
Locale.US

Source The source URL where the story can be downloaded (stored in

$$storySrc).

Any URL

Variables Furthermore, it's possible to send any string along in the story file

that can be used to specify more sources, video numbers,

embedded stuff... These strings are of a form

variableName="StringValue" and can be accessed via the

respective variable $$variableName.

Any string

Table 4: Story File Definition

 10

A story file is displayed in Listing 1 (note the format of the publishing date):

5.2 The Instruction Files
The instruction files describe how to extract content from the fetched html and are the core of this

thesis. For each content provider there is one file that should be generalized enough to allow

processing of all the content from this provider. This file may appear in multiple versions, probably

because different articles have a different structure, but mostly to adapt the extraction process to

any changes the content provider makes.

The instruction file is a xml file through which the html extractor will go instruction by instruction.

Instructions are nested so that each instruction is applied to the same context as the parent

instruction. A simple instruction is defined in Listing 2:

The ruleset statement declares this as a rule set which can be applied to stories having the

contentID "cnn" and the version "4.0". When this rule set is applied to a story from the story file,

all the xml elements within are processed sequentially in a tree-like manner. The first statement is

loadURL. This statement allows to load any web resource specified in the src attribute. In this case

"$$storySrc" is loaded. The $$ makes the statement a variable access, accessing the variable storySrc.

This variable was supplied by the story file and is nothing else than the URL where to fetch the story.

<stories>
 <story contentID="cnn"
 extrVersion="4.0"
 pubDate="Thu, 15 Dec 2011 17:05:42 EST"
 src="http://edition.cnn.com/2011/12/15/world/meast/
 syria-main/index.html?eref=edition"/>
 <story contentID="cnn"
 extrVersion="4.0"
 pubDate="Thu, 15 Dec 2011 23:57:23 EST"
 src="http://edition.cnn.com/2011/12/15/world/asia/
 japannuclear/index.html?eref=edition"
 customVariable="useBorder" />
</stories>

Listing 1: Example Story File

Listing 2: Example Ruleset File

<ruleset contentID="cnn" version="4.0">
 <loadURL src="$$storySrc" sandboxValue="allow-same-origin">
 <find query=".article > .tline">
 <title>
 <extrText/>
 </title>
 </find>
 <loadURL/>
<ruleset/>

 11

After the resources behind the URL have been fetched, all xml elements below the loadURL

statement will be executed. In this case it's only a find statement with further child nodes. The

find statement locates html elements on the web site. Via the query attribute a location can be

specified using jQuery (The jQuery Project, 2010) statements. These actually boil down to CSS

selector (Bert Bos, 2011) statements for most cases. As CSS selectors are an important part in web

development, this provides a well documented and easy to use way to find elements on a web site.

CSS selectors usually return a set of matched elements. It is on this set of elements that child nodes

of the instruction set will be applied to. In the case of our example, the title of the story is set to be

the text found in the ".article > .tline" html node.

The title node sets the title of the story to whatever text is found in its child node. In this case,

extrText is called which simply extracts and returns the text found in the html elements of its

parent node. Since the title node does not change the set of html elements, this set will be the

one found by the find statement, thus extrText returns the text found in ".article > .tline", which

then in turn will be stored as story title.

5.3 Nodes in the Instruction Files
The following table gives an overview of nodes that can be used in the extraction rule set definition,

those are the basic nodes:

Name Function Attributes Child Nodes / Notes

LoadURL Loads any html/xml source
to be processed.

src: The URL where to fetch
the html/xml.
sandboxValue: Values for
the iFrame sandbox, allows
JavaScript functions to be
called if allow-scripts is set.

All loadURL statements
are stored in a list
which will be
processed sequentially
(can cause trouble
when variables are
shared between
multiple loadURL
rules).
Child node: find

Find Changes the html element
set for all child nodes to
the one found by the
query.

query: The CSS selector to
find the element.

Child node: Any

Select Selects a single element
from a html element set.

nElement: Specifies which
element to take ([0, n-1] for
a set containing n elements).

Child node: Any

First Selects the first element
from an element set.

 Child node: Any

Last Selects the last element
from an element set.

 Child node: Any

Not Removes elements from
the set.

query: The CSS selector to
find the elements to be
excluded from the set.

Child node: Any

Iterate Iterates over the element
set, applying child nodes to
all elements.

 Child node: Any

Children Grab all the child elements
of the currently active

 Child node: Any

 12

Name Function Attributes Child Nodes / Notes

element.
Remove Removes elements from

the DOM tree.
query: The CSS selector to
find the elements to be
removed.

Child node: None

RemoveSelf Removes the element itself
from the DOM tree.

 Child node: None

Strip Strips an element from tags
(making it plain text).

 Child node: None

StripSelf Strips the selected
elements from tags,
including their own tag.

 Child node: None

Table 5: Basic Nodes in Instruction Set

The following nodes control the flow during processing:

Name Function Attributes Child Nodes / Notes

IfAttr Checks if a given node
fulfills some attribute
criteria.

attr: Checks if the node has
the given attribute.
value: If set, it additionally
checks if the attribute has
the given value.

Child node: Any

IfNodeName Checks the node name. name: Checks if the node
name has the given value.

Does not look on
lower-, upper-case.
Child node: Any

IfStrContains Checks if a string contains
some other string.

string: The string to check
for occurrences of value.
value: The value that might
or might not appear in the
string.

Statement only makes
sense when used with
variables.
Child node: Any

IfContains Checks if a node contains
other nodes of the type
specified by the CSS
selector.

query: The CSS selector that
defines the html elements to
look for.

Child node: Any

Else Else rule for all if nodes,
has to be written right
after the if node closes, will
be called whenever the if
statement is false.

 Child node: Any

Table 6: Flow Control Nodes in Instruction Set

The following nodes extract text and attributes from the html:

Name Function Attributes Child Nodes / Notes

ExtrAttr Extracts an attribute value
from the node.

attr: The attribute where to
extract the value.

Returns a string.
Child node: None

ExtrHtml Extracts html from within a
node.

 Returns a string.
Child node: None

ExtrText Extracts text from within a
node.

 Returns a string.
Child node: None

customText Allows to enter custom
text.

txt: The text to be inserted. Child node: None

customCDATA Allows to enter custom CDATA: The CDATA to be Child node: None

 13

Name Function Attributes Child Nodes / Notes

CDATA. inserted.
Cut Cuts a string to the part in

between cutoffStart and
cutoffStop.

cutoffStart: The start of the
cut.
cutoffStop: The end of the
cut.

Cutoff strings are
regular expressions,
special characters
have to be escaped
(escape character '\').
Child node: Any string
extraction node

Table 7: Extraction Nodes in Instruction Set

The following nodes will set elements of the story:

Name Function Attributes Child Nodes / Notes

Variable Defines a variable, can be
accessed in any string via
$$variablename.

name: The variable name.
value: The value of the
variable, if no value is
specified, the child node has
to provide the value.

Part of story. Can only
be accessed after
defined (remember
tree-like traversal of
instructions, and
sequential processing
of loadURL).
Child node: Any string
extraction node

Title Sets the story title. Part of story.
Child node: Any string
extraction node

Author Sets the story author. Part of story.
Child node: Any string
extraction node

Thumbnail Sets the story thumbnail
URL.

 Part of story.
Child node: Any string
extraction node

ShortDesc Sets a short description for
the story.

 Part of story.
Child node: Any string
extraction node

SubTitle Sets a story subtitle. Part of story content.
Child node: Any string
extraction node

Image Creates an image to be
placed in the story content
(URL).

src: Optionally; if specified
provides an URL where to
load the image from.

Part of story content.
Child node: Any string
extraction node

Text Creates text to be placed in
the story content.

 Part of story content.
Child node: Any string
extraction node

Div Creates a custom container
where you can place
whatever html you want.

 Part of story content.
Child node: Any string
extraction node

Table 8: Element Nodes in Instruction Set

Wherever variables turn up in instructions, they will be substituted if they have been defined before

(substitution of $$variableName). After the content extraction, a story object will be available that

contains all the data and is ready to be displayed.

 14

6 A Proof-of-Concept Implementation
The application developed in this thesis should show the possibilities of the extraction language. In

addition, part of the thesis was to create a nice display of the aggregated content, so that further

work on the project would have a good start for being visualized.

The application is split in several parts. On the client side there is the implementation of the

extraction language as well as the display of the aggregated content. On the server side there is a

simple crawler that crawls some RSS feeds and a servlet that provides the user application with the

newest stories available.

6.1 Implementation of the Extraction Language
In order to access the structures of the downloaded web sites they have to be parsed and sanitized.

There exist a great number of html sanitizers and libraries that perform this task (see section HTML

Sanitizing / Parsing). Another very easy way to do this is the usage of the built-in browser (via the

WebView widget available on most platforms; a WebView simply is a browser implementation

without user controls). After loading the web page into the WebView it will automatically prepare

the html for display and further processing, in the process even load asynchronous requests over

JavaScript (Ajax calls). The implementation in this thesis is done using an invisible iframe within a

WebView. The pages are loaded into it and processed there, without the user realizing anything

about it. The iframe within the WebView is necessary, as the rest of the application will run in the

WebView (see description under The Surrounding Application: Implementation).

To parse the html and extract important parts according to the protocol definition, some CSS

selection tool has to be used. Again, the built-in browser can be used in combination with JavaScript

techniques to query and process elements of the web site. To make the process easier, the jQuery

(The jQuery Project, 2010) library is additionally chosen in this thesis.

Another aspect is the JavaScript programming itself, which is needed to control the selection and

extraction process. In this thesis Google Web Toolkit (Google Inc., 2011) has been used, since it

allows fast development (programming Java) and highly optimized deployment (GWT has a very

powerful Java to JavaScript compiler). Also, further ports to non-JavaScript implementations will be

easier as the code is already in Java.

The extraction part is written in a single static class featuring different methods for different

extraction nodes. Those methods are called recursively, each call adapting the set of html elements

and the extraction rules to be further processed.

The first function to be described here is the main entry point extract(). This function loads html

from a new URL via an asynchronous call. Once the requested data has been received, it is put into

the iframe for which an ONLOAD event listener exists. The ONLOAD event will fire as soon as the

page is completely loaded, which can be useful when the page itself requests more elements via

JavaScript. In case the ONLOAD never fires (which might happen if a resource is not available), a

timeout is set when to start with the extraction anyways. The extraction now being done is mainly

performed by the extractElement() function.

The extractElement() function handles basic nodes, control nodes and element nodes.

Depending on the node encountered, it performs the requested action (find, select, children,…) and

calls itself again on a new set of html elements with subsequent nodes as extraction instructions.

 15

Since most of the nodes perform some jQuery action, the calls are often simple, reducing the chance

to introduce errors in the code. Listing 3 shows the call for the first node (in this case the jQuery call

root.first()does all the work):

For nodes that accept a string extraction node as child, the respective function extractString() is

called. This function handles the different extraction nodes. If there is more than one extraction

node, the extracted strings will be concatenated. Listing 4 shows the extraction for the extrText

node:

There is one more function that replaces variables found in strings with the respective values. It

iterates through all the variables stored and checks the input string for occurrences of

$$variableName.

The code for the HTMLExtractor can be found in the Appendix.

6.2 The Surrounding Application: Requirements
The application requirements are kept simple, a simple application makes it easy for the user to get

started. Also, the application should be mostly a proof of concept showing the possibilities of the

developed extraction instructions. It lacks user specific content and application customization, apart

from changing the font size.

Basically, the application will feature a simple container displaying one story at a time. A new story

can be displayed by swiping in this main container (a swipe to the left will show a new story, a swipe

to the right will go back one story). The story will be rendered with a big title at the top, an author

and date panel below, followed by all the content.

Furthermore, there's an options panel at the top, having one button to display an information dialog,

two buttons to specify the font size and a spinner icon when the application is loading data (or when

the user has to wait until new stories are available).

// Extract string as text from within current root node

if (nodeType.equals(Constants.NODE_EXTR_TEXT)) {

 retString = retString + root.text();

}

// Selects the first node of the matched elements set

if (nodeType.equals(Constants.NODE_FIRST)) {

 extractElement(iFrameController, node, root.first(), story,

 container, depth + 1);

}

Listing 3: Code Snippet of extractElement()

Listing 4: Code Snippet of extractString()

 16

Figure 4: Application Layout

On the bottom, a swipe controller is displayed on devices with big screens. Using the arrows on this

panel, one can alternatively flip through the stories by clicking instead of swiping.

The application is visualized in Figure 4.

6.3 The Surrounding Application: Implementation
First of all, a decision had to be made which mobile platforms will be used and supported. In order to

allow very broad deployment the first thought was to develop a web page that will do everything on

the fly using JavaScript. The problem with this approach is that the same origin policy of browsers

does not allow content to be aggregated from different servers outside the same domain. The only

way this is allowed is through iframes, but the content of an iframe of foreign origin cannot be

accessed.

The most obvious solution would be to program a native application, which is bound to one platform

though. Since it would be much more convenient to deploy to multiple platforms at the same time,

another solution was chosen. Most platforms support a browser-like widget called WebView, as

described above. It's basically the platforms browser without the standard controls (history back

button, URL field, reload button, ...), giving the developer all the control over content whilst the user

doesn't realize it's a browser. Based on this widget, there are frameworks that allow to program

regular HTML/CSS/JavaScript which will be deployed in the WebView. These frameworks take care of

the binding to the different platforms. Also, they use native functions to circumvent the same origin

problem stated above.

 17

For this thesis, the framework PhoneGap (Adobe Systems Inc. PhoneGap, 2011) was chosen for its

simple and intuitive design, its pricing and license, its wide platform support and the possibility to

develop using standard web techniques. Other possible frameworks that were evaluated are

Rhomobile Rhodes (Rhomobile, 2011), Appcelerator Titanium (Appcelerator Inc., 2011) and MoSync

(MoSync AB, 2011). They were discarded for different reasons: Incompatible licenses, missing

support for certain platforms, no support for common web technologies.

Summarizing, the used technologies are:

 GWT to write the whole application, is then compiled to JavaScript.

 GWTQuery (The GwtQuery Team, 2011), a jQuery implementation for GWT to make the

usage of CSS selectors easy.

 PhoneGap which embeds the JavaScript into the WebView of the respective platform.

The application flow is specified in Figure 5. The dotted lines show asynchronous requests. These

requests will time out after some duration, in case a content provider is not online, a web site cannot

be parsed or the connectivity of the mobile device is not sufficient.

Figure 5: Application Flow

The loaded stories are displayed in the story swiper, a widget that allows swiping through its content.

The application tries to stay ahead of the user by loading stories in the background, so no delay is

introduced when the user swipes the main container to view a new story. If the application doesn't

manage to load stories fast enough, the spinner icon in the options panel will show, showing to the

user that he has to wait for the application to finish extraction.

The story handling of the application is roughly split along a model-view-controller scheme, but as a

proof-of-concept and entry point for further research in the area it wasn’t an absolutely necessary

requirement.

Figure 6 shows the final application running in the emulator, displaying some debug story that was

used to optimize the layout and on a Samsung Galaxy S displaying a story from New York Times.

 18

Figure 6: Application Screenshots

6.4 The Server Part
The RSS crawler of the server part is a simple servlet that fetches a defined set of RSS feeds every 5

minutes. It stores the found stories in xml files named after the content ID of the content providers.

It’s on these xml files the story fetcher operates. Whenever a user requests a new set of stories, the

fetcher is arranging the stories in the xml files according to some defined criteria (mostly publishing

date, but for some high frequent content providers like youtube, some artificial reduction) and

sending the thus created file back to the client.

The client also can request extraction rules from the server, just by specifying the content ID and

extraction file version number. It’s another servlet that handles these requests.

For the creation of extraction rule files, it's recommended to use the developer tools shipped with all

modern browsers. They usually allow changing of the user agent (important to see which files a

content provider will send on your request), show CSS selectors of the elements and give a good

insight into the website.

7 Conclusions
The application developed shows that the extraction rule definitions work well. From the test set of 7

content providers all content could be retrieved and displayed in a nice format. Sometimes some

workarounds had to be used to make data transmission overhead as small as possible and because

 19

the web sites would respond with different sites based on the user agent of the device (string that

identifies the device, it's capabilities, the browser used, …), but this was always possible without any

great effort. Also, the parsing goes reasonably fast (especially since it runs with JavaScript in a

browser, which is single-threaded and a scripting language), at least on more advanced and powerful

devices as they are sold today.

Further work could include a more powerful server that is able to aggregate more news sources and

user specific content. On the client side, more customization would be preferable, especially to select

which content providers should be displayed and how their stories should be visualized. Also,

measuring the time a user spends reading a story would be interesting, especially for selection of

user specific content. Within regard to this, an interesting improvement would be the automatic

selection of stories similar to those the user spent a lot of time with.

One has to think of possible advantages of a native application version. For example those could be

the possibility to synchronize whenever WLAN is available and to store the stories locally. Also, a

more responsive user interface could be possible since the extraction could be decoupled from the

display.

Automated generation of extraction files would be desirable, or at least tools to help users who want

to create their own extraction files. In this field, a mechanism for users to upload, share, correct and

expand extraction rule sets would also be interesting to develop.

8 Acknowledgements
Special thanks to my supervisors Samuel Welten and Mihai Calin, who helped me a lot finding the

right extraction rule set, also with all the technical stuff, technologies and the design and layout of

the application. Credits for the icons used within the application go to Mihai, thank you!

Thanks to Professor Dr. Roger Wattenhofer for giving the opportunity to write this interesting thesis

in his group.

And last but not least thanks to my family and friends, who helped me with ideas, application testing

and proof-reading of the thesis.

 20

9 References
A. F. R. Rahman, H. A. (2001). Content Extraction from HTML Documents. 1st Int. Workshop on Web,

WDA 2001, (pp. 7-10). Seattle, Washington, USA.

Adobe Systems Inc. PhoneGap. (2011). PhoneGap. Retrieved January 13, 2012, from PhoneGap:

http://phonegap.com/contact

Alphonso Labs, Pulse. (2011). Pulse News. Retrieved January 13, 2012, from Pulse News:

http://www.pulse.me/

Anders Berglund, S. B. (2010, December 14). W3C: XML Path Language (XPath) 2.0 (Second Edition).

Retrieved January 13, 2011, from XML Path Language (XPath) 2.0 (Second Edition):

http://www.w3.org/TR/2010/REC-xpath20-20101214/

Appcelerator Inc. (2011). Use Appcelerator Titanium to build mobile apps for iPhone & Android and

desktop apps for Windows, Mac OS X & Linux from Web technologies. Retrieved January 13, 2012,

from Use Appcelerator Titanium to build mobile apps for iPhone & Android and desktop apps for

Windows, Mac OS X & Linux from Web technologies: http://www.appcelerator.com/

Bert Bos, T. C. (2011, June 07). Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification.

Retrieved January 13, 2012, from Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification:

http://www.w3.org/TR/CSS2/cover.html

Cowan, J. (2004-2011). TagSoup. Retrieved January 13, 2012, from TagSoup: Just Keep On Truckin':

http://ccil.org/~cowan/XML/tagsoup/#other

Fabio Vitali, A. D. (2004, July). Rule-based structural analysis of web pages. DAS 2004: Proceedings of

the 6th International Workshop on Document Analysis Systems .

Google Inc. (2011). Google Currents. Retrieved January 13, 2012, from Google Currents:

http://www.google.com/producer/currents

Google Inc. (2011). Google Web Toolkit - Google Code. Retrieved January 13, 2012, from Google Web

Toolkit - Google Code: http://code.google.com/intl/de/webtoolkit/

Gottron, T. (2008). Content Extraction: Identifying the Main Content in HTML Documents. Johannes-

Gutenberg-Universität Mainz.

Hedley, J. (2009-2011). JSoup. Retrieved January 13, 2012, from JSoup: Java HTML Parser:

http://jsoup.org/

MoSync AB. (2011). Create iPhone and Android apps with JavaScript and C++ | cross-platform mobile

application development. Retrieved January 13, 2012, from Create iPhone and Android apps with

JavaScript and C++ | cross-platform mobile application development: http://www.mosync.com/

Mozilla Developer Network. (1995-2011). JavaScript Official Documentation. Retrieved January 13,

2012, from JavaScript Official Documentation: https://developer.mozilla.org/en/JavaScript

Opera Software. (2011). Opera Mini & Mobile. Retrieved January 13, 2012, from Opera Mini &

Mobile: http://www.opera.com/mobile/

 21

Rhomobile. (2011). Cross-Platform Mobile Development | Rhomobile. Retrieved January 13, 2012,

from Cross-Platform Mobile Development | Rhomobile: http://rhomobile.com/

Suhit Gupta, G. K. (2003, May 20-24). DOM-based Content Extraction of HTML Documents. WWW '03

Proceedings of the 12th international conference on World Wide Web , pp. 207-214.

Suhit Gupta, H. B. (2006). Verifying Genre-based Clustering Approach. WWW '06: Proceedings of the

15th International Conference on World Wide Web , pp. 875-876.

Taptu. (2011). Taptu - News DJ! Retrieved January 13, 2012, from Taptu - News DJ!:

http://www.taptu.com/

The GwtQuery Team. (2011). gwtquery - A jQuery clone for GWT, and much more. Retrieved January

13, 2012, from gwtquery - A jQuery clone for GWT, and much more:

http://code.google.com/p/gwtquery/

The jQuery Project. (2010). jQuery. Retrieved January 13, 2012, from jQuery: Write less, do more:

http://jquery.org/

WHATWG, Apple Computer, Inc., Mozilla Foundation and Opera Software ASA. (2004-2012).

WHATWG HTML Living Standard. Retrieved January 13, 2012, from WHATWG HTML Living Standard:

http://www.whatwg.org/specs/web-apps/current-work/multipage/index.html

 i

10 Appendix

10.1 HTMLExtractor.java
package ch.ethz.disco.whatsnew.client.htmlextractor;

import static com.google.gwt.query.client.GQuery.$;

import java.util.ArrayList;

import java.util.Set;

import ch.ethz.disco.whatsnew.client.IFrameController;

import ch.ethz.disco.whatsnew.client.siteelement.DivElement;

import ch.ethz.disco.whatsnew.client.siteelement.ImageElement;

import ch.ethz.disco.whatsnew.client.siteelement.SiteElement;

import ch.ethz.disco.whatsnew.client.siteelement.SubTitleElement;

import ch.ethz.disco.whatsnew.client.siteelement.TextElement;

import ch.ethz.disco.whatsnew.client.siteelement.URLLoaderElement;

import ch.ethz.disco.whatsnew.client.story.Story;

import ch.ethz.disco.whatsnew.client.utils.Constants;

import ch.ethz.disco.whatsnew.client.utils.Utils;

import com.google.gwt.core.client.GWT;

import com.google.gwt.http.client.Request;

import com.google.gwt.http.client.RequestBuilder;

import com.google.gwt.http.client.RequestCallback;

import com.google.gwt.http.client.RequestException;

import com.google.gwt.http.client.Response;

import com.google.gwt.query.client.GQuery;

import com.google.gwt.user.client.DOM;

import com.google.gwt.user.client.Event;

import com.google.gwt.user.client.EventListener;

import com.google.gwt.user.client.Timer;

import com.google.gwt.xml.client.Element;

import com.google.gwt.xml.client.Node;

import com.google.gwt.xml.client.NodeList;

/**

 * @author Dominik Bucher, D-ITET, DCG

 *

 * A class for automated extraction of parts of html. Used only static.

 */

public abstract class HTMLExtractor {

 /**

 * Loads a web page into the iframe and starts extracting from it. First,

 * the sandbox value of the iframe is set to ensure scrips are only run when

 * desired. An asynchronous request is made to the URL, fetching the html or xml

 ii

 * at the location. Once the response has been received it is put into the

 * iframe on which an eventlistener is registered that waits for the ONLOAD

 * event (to ensure the iframe can load stuff on it's own if needed). There

 * is also a timer that ensures that the content will be parsed even if no

 * ONLOAD event fires. Once the ONLOAD event has fired

 * or the timer has triggered, a call to extractElement is made where the

 * actual extraction takes place.

 *

 * @param extractionRules

 * The ruleset of the extraction

 * @param URL

 * URL where to fetch the html / xml

 * @param iFrameController

 * Controller that handles interaction with the iframe

 * @param story

 * Story that defines certain things (i.e. sandbox attributes)

 * @param container

 * The story container where the parsed elements will be thrown

 * into

 * @param depth

 * Function depth, used to determine in which level the xml tree

 * parsing is

 */

 public static void extract(final Element extractionRules, final String URL, final IFrameController iFrameController, final Story story, final

 ArrayList<SiteElement> container, final int depth) {

 iFrameController.clearIFrame();

 iFrameController.getIFrame().setAttribute("sandbox", extractionRules.getAttribute("sandboxValue"));

 RequestBuilder builder = new RequestBuilder(RequestBuilder.GET, URL);

 try {

 builder.sendRequest(null, new RequestCallback() {

 boolean requestParsed = false;

 @Override

 public void onResponseReceived(Request request,

 Response response) {

 // Can be interesting to see what the actual html received looks like

 //Window.alert(response.getText());

 iFrameController.clearIFrame();

 iFrameController.fillIFrame(response.getText());

 DOM.sinkEvents((com.google.gwt.user.client.Element) $("iframe.invisibleFrame").elements()[0], Event.ONLOAD);

 DOM.setEventListener((com.google.gwt.user.client.Element) $("iframe.invisibleFrame").elements()[0],

 new EventListener() {

 @Override

 public void onBrowserEvent(Event event) {

 if(event.getTypeInt() == Event.ONLOAD) {

 if (!requestParsed) {

 requestParsed = true;

 iii

 extractElement(iFrameController, extractionRules,

 $("iframe.invisibleFrame").contents(), story, container, depth);

 }

 }

 }

 });

 Timer t = new Timer() {

 @Override

 public void run() {

 if (!requestParsed) {

 requestParsed = true;

 extractElement(iFrameController, extractionRules, $("iframe.invisibleFrame").contents(),

 story, container, depth);

 }

 }

 };

 t.schedule(Constants.MAX_URLLOAD_TIMEOUT);

 }

 @Override

 public void onError(Request request, Throwable exception) {

 Utils.logToDebugConsole("Error, server does not respond with html file requested", Constants.LOG_ERROR);

 GWT.log("Error, server does not respond with html file requested",

 exception);

 story.onFinishedLoadingStory(false);

 }

 });

 } catch (RequestException e) {

 Utils.logToDebugConsole("Error requesting xml file, client side", Constants.LOG_ERROR);

 GWT.log("Error requesting xml file, client side", e);

 story.onFinishedLoadingStory(false);

 }

 }

 /**

 * Fetches content from a web page that has already been loaded via

 * extract(). Iterates through elements in xml, doing the specified actions.

 * For new web sites to load, the current one is being finished, then a new

 * one is loaded via extract(). The function is called recursively on all

 * nodes found.

 *

 * @param iFrameController

 * Controller that handles interaction with iframe

 * @param extractionRules

 * The ruleset found below the loadURL node (or similar)

 * @param root

 * Topmost jQuery selection for which the function (and xml

 * nodes) is applied

 * @param story

 iv

 * Story for which the current extraction is being done

 * @param container

 * Place where the extracted things are being put

 * @param depth

 * Function depth, used to determine when recursion is at top

 * again, to load new URL's. Usually, recursive calls are made

 * with depth + 1

 */

 public static void extractElement(final IFrameController iFrameController, final Element extractionRules, final GQuery root, final Story

 story, final ArrayList<SiteElement> container, final int depth) {

 NodeList nodes = extractionRules.getChildNodes();

 for (int i = 0; i < nodes.getLength(); i++) {

 // Checks if the node is indeed an element node (not a text node, ...)

 if (nodes.item(i).getNodeType() == Node.ELEMENT_NODE) {

 final Element node = (Element)nodes.item(i);

 String nodeType = node.getNodeName();

 // The loadURL node creates a new URLPanel, that is loaded once the current web site has finished with the extraction

 if (nodeType.equals("loadURL")) {

 URLLoaderElement urlLoader = new URLLoaderElement(container.size());

 if (node.hasAttribute("src")) {

 urlLoader.URL = node.getAttribute("src");

 }

 urlLoader.extractionRules = node;

 story.urlLoaders.add(urlLoader);

 container.add(urlLoader);

 Utils.logToDebugConsole("Created load URL panel to: " + urlLoader.URL, Constants.LOG_VERBOSE);

 // The find node searches for a certain jQuery, executing further nodes under this root

 } else if (nodeType.equals(Constants.NODE_FIND)) {

 extractElement(iFrameController, node, root.find(replaceVariables(node.getAttribute("query"), story)), story,

 container, depth + 1);

 // The select node selects a single element of a jQuery set, executing further nodes under this root

 } else if (nodeType.equals(Constants.NODE_SELECT)) {

 try {

 if (!root.eq(Integer.parseInt(node.getAttribute("nElement"))).isEmpty()) {

 extractElement(iFrameController, node, root.eq(Integer.parseInt(node.getAttribute("nElement"))),

 story, container, depth + 1);

 }

 } catch (NumberFormatException e) {

 Utils.logToDebugConsole("Extraction file spec. wrong, nElement has to be a number",

 Constants.LOG_ERROR);

 }

 // Selects the first node of the matched elements set

 } else if (nodeType.equals(Constants.NODE_FIRST)) {

 extractElement(iFrameController, node, root.first(), story, container, depth + 1);

 v

 // Selects the last node of the matched elements set

 } else if (nodeType.equals(Constants.NODE_LAST)) {

 extractElement(iFrameController, node, root.last(), story, container, depth + 1);

 // Removes the queried nodes from the previous set

 } else if (nodeType.equals(Constants.NODE_NOT)) {

 extractElement(iFrameController, node, root.not(replaceVariables(node.getAttribute("query"), story)), story,

 container, depth + 1);

 // The iterate node iterates through a set of jQuery nodes, executing further nodes under the respective html node

 } else if (nodeType.equals(Constants.NODE_ITERATE)) {

 for (int j = 0; j < root.length(); j++) {

 extractElement(iFrameController, node, root.eq(j), story, container, depth + 1);

 }

 // The children node selects all the children of a given node, executing further nodes under this jQuery set

 } else if (nodeType.equals(Constants.NODE_CHILDREN)) {

 if (root.children().length() > 0) {

 extractElement(iFrameController, node, root.children(), story, container, depth + 1);

 }

 // The remove node removes the via jQuery selected html nodes

 } else if (nodeType.equals(Constants.NODE_REMOVE)) {

 root.remove(replaceVariables(node.getAttribute("query"), story));

 // This removes the matched set itself

 } else if (nodeType.equals(Constants.NODE_REMOVE_SELF)) {

 root.remove();

 // The strip node strips a html node from all children html tags (leaving the top one intact)

 } else if (nodeType.equals(Constants.NODE_STRIP)) {

 root.html(root.text());

 // The strip self node strips the currently selected node, meaning it removes the html tag

 } else if (nodeType.equals(Constants.NODE_STRIP_SELF)) {

 root.after(root.html());

 root.remove();

 // The variable node creates a variable that can later be accessed via $$variableName

 } else if (nodeType.equals(Constants.NODE_VARIABLE)) {

 if (node.hasAttribute("name") && node.getAttribute("name").length() > 0) {

 if (node.hasAttribute("value")) {

 story.variables.put(node.getAttribute("name"), node.getAttribute("value"));

 } else {

 story.variables.put(node.getAttribute("name"), extractString(node, root, story, depth + 1));

 }

 } else {

 Utils.logToDebugConsole("Variable error: Either name is incorrect or variable already exists in story",

 Constants.LOG_ERROR);

 vi

 }

 // The if attribute node searches for a given attribute and proceeds processing only if the attribute is found

 } else if (nodeType.equals(Constants.NODE_IF_ATTR)) {

 if (root.first().attr(replaceVariables(node.getAttribute("attr"),

 story)).equals(replaceVariables(node.getAttribute("value"), story))) {

 extractElement(iFrameController, node, root.first(), story, container, depth + 1);

 } else {

 // +2 will return the next element node (jumping a text node)

 if (nodes.item(i + 2) != null) {

 if (nodes.item(i + 2).getNodeName().equals(Constants.NODE_ELSE)) {

 extractElement(iFrameController, (Element)nodes.item(i + 2), root, story, container,

 depth + 1);

 }

 }

 }

 // The if attribute contains node searches for a given attribute and proceeds processing only if the attribute contains

 the given string

 } else if (nodeType.equals(Constants.NODE_IF_STR_CONTAINS)) {

 if (replaceVariables(node.getAttribute("string"),

 story).contains(replaceVariables(node.getAttribute("contains"), story))) {

 extractElement(iFrameController, node, root.first(), story, container, depth + 1);

 } else {

 // +2 will return the next element node (jumping a text node)

 if (nodes.item(i + 2) != null) {

 if (nodes.item(i + 2).getNodeName().equals(Constants.NODE_ELSE)) {

 extractElement(iFrameController, (Element)nodes.item(i + 2), root, story, container,

 depth + 1);

 }

 }

 }

 // The if nodename node checks if the current root has the given name

 } else if (nodeType.equals(Constants.NODE_IF_NODE_NAME)) {

 if (root.get(0).getNodeName().toLowerCase().equals(replaceVariables(node.getAttribute("name"), story))) {

 extractElement(iFrameController, node, root.first(), story, container, depth + 1);

 } else {

 // +2 will return the next element node (jumping a text node)

 if (nodes.item(i + 2) != null) {

 if (nodes.item(i + 2).getNodeName().equals(Constants.NODE_ELSE)) {

 extractElement(iFrameController, (Element)nodes.item(i + 2), root, story, container,

 depth + 1);

 }

 }

 }

 // The if node contains checks if the current root contains nodes of a certain query

 } else if (nodeType.equals(Constants.NODE_IF_CONTAINS)) {

 if (root.find(replaceVariables(node.getAttribute("query"), story)).length() > 0) {

 vii

 extractElement(iFrameController, node, root, story, container, depth + 1);

 } else {

 // +2 will return the next element node (jumping a text node)

 if (nodes.item(i + 2) != null) {

 if (nodes.item(i + 2).getNodeName().equals(Constants.NODE_ELSE)) {

 extractElement(iFrameController, (Element)nodes.item(i + 2), root, story, container,

 depth + 1);

 }

 }

 }

 // The else node is executed if an if node returns false

 } else if (nodeType.equals(Constants.NODE_ELSE)) {

 // Do nothing, as else node is handled in if nodes

 // Creates an image element in the story container

 } else if (nodeType.equals(Constants.NODE_IMG)) {

 ImageElement img;

 if (node.hasAttribute("src")) {

 img = new ImageElement(replaceVariables(node.getAttribute("src"), story));

 } else {

 img = new ImageElement(extractString(node, root.first(), story, depth + 1));

 }

 container.add(img);

 // Creates a text element in the story container

 } else if (nodeType.equals(Constants.NODE_TXT)) {

 TextElement txt = new TextElement(extractString(node, root.first(), story, depth + 1));

 container.add(txt);

 // Creates a div element in the story container

 } else if (nodeType.equals(Constants.NODE_DIV)) {

 DivElement divEl = new DivElement(extractString(node, root.first(), story, depth + 1));

 container.add(divEl);

 // Sets the story title

 } else if (nodeType.equals(Constants.NODE_TITLE)) {

 story.title = extractString(node, root.first(), story, depth + 1);

 Utils.logToDebugConsole("Story title: "+story.title, Constants.LOG_DEBUG);

 // Sets a subtitle for the story

 } else if (nodeType.equals(Constants.NODE_SUBTITLE)) {

 SubTitleElement subEl = new SubTitleElement(extractString(node, root.first(), story, depth + 1));

 container.add(subEl);

 // Sets the src url of the story thumbnail

 } else if (nodeType.equals(Constants.NODE_THUMBNAIL)) {

 story.thumbnailSrc = extractString(node, root.first(), story, depth + 1);

 Utils.logToDebugConsole("Story thumb: "+story.thumbnailSrc, Constants.LOG_VERBOSE);

 viii

 // Sets a short description for the story

 } else if (nodeType.equals(Constants.NODE_SHORT_DESC)) {

 story.shortDesc = extractString(node, root.first(), story, depth + 1);

 Utils.logToDebugConsole("Story sDesc: "+story.shortDesc, Constants.LOG_VERBOSE);

 // Sets an author for the story

 } else if (nodeType.equals(Constants.NODE_AUTHOR)) {

 story.author = extractString(node, root.first(), story, depth + 1);

 Utils.logToDebugConsole("Story author: "+story.author, Constants.LOG_VERBOSE);

 // Sets the date for the story

 } else if (nodeType.equals(Constants.NODE_DATE)) {

 story.dateStr = extractString(node, root.first(), story, depth + 1);

 Utils.logToDebugConsole("Story author: "+story.author, Constants.LOG_VERBOSE);

 }

 }

 }

 // On top recursive level, go on loading other URL's as discovered before; if there are none, set story loaded to true

 if (depth <= 0) {

 iFrameController.clearIFrame();

 if (!story.urlLoaders.isEmpty()) {

 URLLoaderElement urlLoaderExtr = story.urlLoaders.remove(0);

 Utils.logToDebugConsole("Loading next url panel: " + urlLoaderExtr.URL, Constants.LOG_VERBOSE);

 extract(urlLoaderExtr.extractionRules, replaceVariables(urlLoaderExtr.URL, story),iFrameController, story,

 urlLoaderExtr.subElements, 0);

 Utils.logToDebugConsole("URLPanels contains " + story.urlLoaders.size() + " elements", Constants.LOG_VERBOSE);

 } else {

 story.loaded = true;

 story.waitingForReply = false;

 story.onFinishedLoadingStory(true);

 }

 }

 }

 /**

 * Replaces variables ("$$variableName") with all the variables found in

 * story object.

 *

 * @param input

 * String on which to apply function

 * @param story

 * Holds the variables to substitute in ArrayList variables

 * @return The string with variables substituted by their respective value

 */

 private static String replaceVariables(String input, Story story) {

 Set<String> keySet = story.variables.keySet();

 for (String key : keySet) {

 input = input.replace("$$" + key, story.variables.get(key));

 ix

 }

 return input;

 }

 /**

 * Extracts a string from a html node (can be text, html, cdata, attribute, ...). Multiple strings can be extracted and will be concatenated.

 *

 * @param extractionRules The extraction rule that specifies how to extract the string

 * @param root JQuery root elements

 * @param story Current story

 * @param depth Recursion depth

 * @return The string extracted

 */

 private static String extractString(Element extractionRules, GQuery root, Story story, int depth) {

 if (root.isEmpty()) {

 return "";

 }

 String retString = "";

 NodeList nodes = extractionRules.getChildNodes();

 for (int i = 0; i < nodes.getLength(); i++) {

 if (nodes.item(i).getNodeType() == Node.ELEMENT_NODE) {

 final Element node = (Element)nodes.item(i);

 String nodeType = node.getNodeName();

 // Extract string from attribute

 if (nodeType.equals(Constants.NODE_EXTR_ATTR)) {

 retString = retString + root.attr(node.getAttribute("attr"));

 // Extract string as html from within current root node

 } else if (nodeType.equals(Constants.NODE_EXTR_HTML)) {

 retString = retString + root.html();

 // Extract string as text from within current root node

 } else if (nodeType.equals(Constants.NODE_EXTR_TEXT)) {

 retString = retString + root.text();

 // Insert custom text in node

 } else if (nodeType.equals(Constants.NODE_CUSTOM_TEXT)) {

 retString = retString + replaceVariables(node.getAttribute("txt"), story);

 // Insert custom CDATA in node

 } else if (nodeType.equals(Constants.NODE_CUSTOM_CDATA)) {

 retString = retString + replaceVariables(node.getChildNodes().item(1).getNodeValue(), story);

 // Get any string from current root node and cut it

 } else if (nodeType.equals(Constants.NODE_MOD_STR_CUT)) {

 String toCut = extractString(node, root, story, depth + 1);

 x

 String[] firstSplit = toCut.split(node.getAttribute("cutoffStart"));

 String[] secondSplit = firstSplit[1].split(node.getAttribute("cutoffStop"));

 retString = retString + secondSplit[0];

 }

 }

 }

 return retString;

 }

}

